Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces

2013 ◽  
Vol 31 (3) ◽  
pp. 363-383 ◽  
Author(s):  
Z. Liu ◽  
J. Lv ◽  
R. Sakthivel
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
M. Mohan Raja ◽  
V. Vijayakumar ◽  
Le Nhat Huynh ◽  
R. Udhayakumar ◽  
Kottakkaran Sooppy Nisar

AbstractIn this paper, we investigate the approximate controllability of fractional evolution inclusions with hemivariational inequalities of order $1< r<2$ 1 < r < 2 . The main results of this paper are verified by using the fractional theories, multivalued analysis, cosine families, and fixed-point approach. At first, we discuss the existence of the mild solution for the class of fractional systems. After that, we establish the approximate controllability of linear and semilinear control systems. Finally, an application is presented to illustrate our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mourad Kerboua ◽  
Amar Debbouche ◽  
Dumitru Baleanu

We study a class of fractional stochastic dynamic control systems of Sobolev type in Hilbert spaces. We use fixed point technique, fractional calculus, stochastic analysis, and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions for approximate controllability is formulated and proved. An example is also given to provide the obtained theory.


2020 ◽  
Vol 37 (4) ◽  
pp. 1070-1088 ◽  
Author(s):  
Sumit Arora ◽  
Soniya Singh ◽  
Jaydev Dabas ◽  
Manil T Mohan

Abstract This paper is concerned with the approximate controllability of semilinear impulsive functional differential systems in Hilbert spaces with non-local conditions. We establish sufficient conditions for approximate controllability of such systems via resolvent operator and Schauder’s fixed point theorem. An application involving the impulse effect associated with delay and non-local conditions is presented to verify our claimed results.


2018 ◽  
Vol 36 (2) ◽  
pp. 603-622 ◽  
Author(s):  
Yong Zhou ◽  
S Suganya ◽  
M Mallika Arjunan ◽  
B Ahmad

Abstract In this paper, the problem of approximate controllability for non-linear impulsive fractional integro-differential equation with state-dependent delay in Hilbert spaces is investigated. We study the approximate controllability for non-linear impulsive integro-differential systems under the assumption that the corresponding linear control system is approximately controllable. By utilizing the methods of fractional calculus, semigroup theory, fixed-point theorem coupled with solution operator, sufficient conditions are formulated and proved. Finally, an example is provided to illustrate the proposed theory.


Author(s):  
Zuomao Yan ◽  
Hongwu Zhang

We study the approximate controllability of a class of fractional partial neutral integro-differential inclusions with infinite delay in Hilbert spaces. By using the analytic α-resolvent operator and the fixed point theorem for discontinuous multivalued operators due to Dhage, a new set of necessary and sufficient conditions are formulated which guarantee the approximate controllability of the nonlinear fractional system. The results are obtained under the assumption that the associated linear system is approximately controllable. An example is provided to illustrate the main results.


2014 ◽  
Vol 15 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Mo Chen

In this paper, the approximate controllability for semilinear stochastic equations in Hilbert spaces is studied. The additive noise is the formal derivative of a fractional Brownian motion in a Hilbert space with the Hurst parameter in the interval (½, 1). Sufficient conditions are established. The results are obtained by using the Banach fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document