functional evolution
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 52)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Ting Lan ◽  
Xiaoyu Yang ◽  
Jiwei Chen ◽  
Peng Tian ◽  
Lina Shi ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Jigyasa Arora ◽  
Yukihiro Kinjo ◽  
Jan Šobotník ◽  
Aleš Buček ◽  
Crystal Clitheroe ◽  
...  

SUMMARYTermites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species, but remains largely unknown in other taxa. We intend to feel this gap and provide a global understanding of the functional evolution of termite gut microbiota. We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that key nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ∼150 million years ago. Therefore, the “world smallest bioreactor” has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Lyu ◽  
Zhongqi Liufu ◽  
Juan Xiao ◽  
Tian Tang

New miRNAs are evolutionarily important but their functional evolution remains unclear. Here we report that the evolution of a microRNA cluster, mir-972C rewires its downstream regulatory networks in Drosophila. Genomic analysis reveals that mir-972C originated in the common ancestor of Drosophila where it comprises six old miRNAs. It has subsequently recruited six new members in the melanogaster subgroup after evolving for at least 50 million years. Both the young and the old mir-972C members evolved rapidly in seed and non-seed regions. Combining target prediction and cell transfection experiments, we found that the seed and non-seed changes in individual mir-972C members cause extensive target divergence among D. melanogaster, D. simulans, and D. virilis, consistent with the functional evolution of mir-972C reported recently. Intriguingly, the target pool of the cluster as a whole remains relatively conserved. Our results suggest that clustering of young and old miRNAs broadens the target repertoires by acquiring new targets without losing many old ones. This may facilitate the establishment of new miRNAs in existing regulatory networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhong-Hua Wu

Through the use of the measure theory, evolution family, “Acquistapace–Terreni” condition, and Hölder inequality, the core objective of this work is to seek to analyze whether there is unique μ -pseudo almost periodic solution to a functional evolution equation with Stepanov forcing terms in a Banach space. Certain adequate conditions are derived guaranteeing there is unique μ -pseudo almost periodic solution to the equation by Lipschitz condition and contraction mapping principle. Finally, an example is used to demonstrate our theoretical findings.


Author(s):  
K E Jones ◽  
R J Brocklehurst ◽  
S E Pierce

Abstract Deciphering the biological function of rare or extinct species is key to understanding evolutionary patterns across the tree of life. While soft tissues are vital determinants of joint function, they are rarely available for study. Therefore, extracting functional signals from skeletons, which are more widely available via museum collections, has become a priority for the field of comparative biomechanics. While most work has focused on the limb skeleton, the axial skeleton plays a critical role in body support, respiration, and locomotion, and is therefore of central importance for understanding broad-scale functional evolution. Here, we describe and experimentally validate AutoBend, an automated approach to estimating intervertebral joint function from bony vertebral columns. AutoBend calculates osteological range of motion (oROM) by automatically manipulating digitally articulated vertebrae while incorporating multiple constraints on motion, including both bony intersection and the role of soft tissues by restricting excessive strain in both centrum and zygapophyseal articulations. Using AutoBend and biomechanical data from cadaveric experiments on cats and tegus, we validate important modeling parameters required for oROM estimation, including the degree of zygapophyseal disarticulation, and the location of the center of rotation. Based on our validation, we apply a model with the center of rotation located within the vertebral disc, no joint translation, around 50% strain permitted in both zygapophyses and discs, and a small amount of vertebral intersection permitted. Our approach successfully reconstructs magnitudes and craniocaudal patterns of motion obtained from ex vivo experiments, supporting its potential utility. It also performs better than more typical methods that rely solely on bony intersection, emphasizing the importance of accounting for soft tissues. We estimated the sensitivity of the analyses to vertebral model reconstruction by varying joint spacing, degree of overlap, and the impact of landmark placement. The effect of these factors was small relative to biological variation craniocaudally and between bending directions. Within, we also present a new approach for estimating joint stiffness directly from oROM and morphometric measurements that can successfully reconstruct the craniocaudal patterns, but not magnitudes, derived from experimental data. Together, this work represents a significant step forward for understanding vertebral function in difficult-to-study (e.g., rare or extinct) species, paving the way for a broader understanding of patterns of functional evolution in the axial skeleton.


2021 ◽  
Vol 118 (29) ◽  
pp. e2023247118
Author(s):  
Rong Chen ◽  
Qidong Jia ◽  
Xin Mu ◽  
Ben Hu ◽  
Xiang Sun ◽  
...  

Chimeric terpene synthases, which consist of C-terminal prenyltransferase (PT) and N-terminal class I terpene synthase (TS) domains (termed PTTSs here), is unique to fungi and produces structurally diverse di- and sesterterpenes. Prior to this study, 20 PTTSs had been functionally characterized. Our understanding of the origin and functional evolution of PTTS genes is limited. Our systematic search of sequenced fungal genomes among diverse taxa revealed that PTTS genes were restricted to Dikarya. Phylogenetic findings indicated different potential models of the origin and evolution of PTTS genes. One was that PTTS genes originated in the common Dikarya ancestor and then underwent frequent gene loss among various subsequent lineages. To understand their functional evolution, we selected 74 PTTS genes for biochemical characterization in an efficient precursor-providing yeast system employing chassis-based, robot-assisted, high-throughput automatic assembly. We found 34 PTTS genes that encoded active enzymes and collectively produced 24 di- and sesterterpenes. About half of these di- and sesterterpenes were also the products of the 20 known PTTSs, indicating functional conservation, whereas the PTTS products included the previously unknown sesterterpenes, sesterevisene (1), and sesterorbiculene (2), suggesting that a diversity of PTTS products awaits discovery. Separating functional PTTSs into two monophyletic groups implied that an early gene duplication event occurred during the evolution of the PTTS family followed by functional divergence with the characteristics of distinct cyclization mechanisms.


Sign in / Sign up

Export Citation Format

Share Document