Numerical analysis of boundary integral solution of the Helmholtz equation in domains with non-smooth boundaries

1993 ◽  
Vol 13 (1) ◽  
pp. 43-66 ◽  
Author(s):  
CHEN KE ◽  
S. AMINI

The question of non-uniqueness in boundary integral equation formu­lations of exterior problems for the Helmholtz equation has recently been resolved with the use of additional radiating multipoles in the definition of the Green function. The present note shows how this modification may be included in a rigorous formalism and presents an explicit choice of co­efficients of the added terms that is optimal in the sense of minimizing the least-squares difference between the modified and exact Green functions.


1984 ◽  
Vol 27 (3) ◽  
pp. 303-311 ◽  
Author(s):  
R. E. Kleinman ◽  
G. F. Roach

In a recent paper the authors considered the transmission problem for the Helmholtz equation by using a reformulation of the problem in terms of a pair of coupled boundary integral equations with modified Green's functions as kernels. In this note we settle the question of the unique solvability of these modified boundary integral equations.


2020 ◽  
Vol 46 (5) ◽  
Author(s):  
Fredrik Fryklund ◽  
Mary Catherine A. Kropinski ◽  
Anna-Karin Tornberg

Abstract Integral equation–based numerical methods are directly applicable to homogeneous elliptic PDEs and offer the ability to solve these with high accuracy and speed on complex domains. In this paper, such a method is extended to the heat equation with inhomogeneous source terms. First, the heat equation is discretised in time, then in each time step we solve a sequence of so-called modified Helmholtz equations with a parameter depending on the time step size. The modified Helmholtz equation is then split into two: a homogeneous part solved with a boundary integral method and a particular part, where the solution is obtained by evaluating a volume potential over the inhomogeneous source term over a simple domain. In this work, we introduce two components which are critical for the success of this approach: a method to efficiently compute a high-regularity extension of a function outside the domain where it is defined, and a special quadrature method to accurately evaluate singular and nearly singular integrals in the integral formulation of the modified Helmholtz equation for all time step sizes.


Sign in / Sign up

Export Citation Format

Share Document