scholarly journals On the convergence of a finite volume method for the Navier–Stokes–Fourier system

Author(s):  
Eduard Feireisl ◽  
Mária Lukáčová-Medviďová ◽  
Hana Mizerová ◽  
Bangwei She

Abstract The goal of the paper is to study the convergence of finite volume approximations of the Navier–Stokes–Fourier system describing the motion of compressible, viscous and heat-conducting fluids. The numerical flux uses upwinding with an additional numerical diffusion of order $\mathcal O(h^{ \varepsilon +1})$, $0<\varepsilon <1$. The approximate solutions are piecewise constant functions with respect to the underlying polygonal mesh. We show that the numerical solutions converge strongly to the classical solution as long as the latter exists. On the other hand, any uniformly bounded sequence of numerical solutions converges unconditionally to the classical solution of the Navier–Stokes–Fourier system without assuming a priori its existence. A similar unconditional convergence result is obtained for a sequence of numerical solutions with uniformly bounded densities and temperatures if the bulk viscosity vanishes.

2004 ◽  
Vol 15 (02) ◽  
pp. 307-319 ◽  
Author(s):  
AHMAD AL-ZOUBI ◽  
GUNTHER BRENNER

In the present paper, a comparative study of numerical solutions for steady flows with heat transfer based on the finite volume method (FVM) and the relatively new lattice Boltzmann method (LBM) is presented. In the last years, the LB methods have challenged the classical FV methods to solve the Navier–Stokes equations and have proven to be superior in accuracy and efficiency for certain applications. Most of these studies were related to the transport of mass and momentum. In the meantime, significant effort has been invested in the application of the LBM to simulate flows including heat transfer. The studies in the present paper are the analysis of performance and accuracy aspects of LBM applied to the prediction of these flows. For a fully developed laminar flow between parallel plates, analytical solutions for the heat transfer in fully developed thermal boundary layers are available and may be compared with the respective numerical results. Finally, a hybrid approach is proposed to circumvent numerical problems of the thermal LB methods.


2019 ◽  
Vol 53 (6) ◽  
pp. 1957-1979 ◽  
Author(s):  
Eduard Feireisl ◽  
Mária Lukáčová-Medvid’ová ◽  
Hana Mizerová ◽  
Bangwei She

We study convergence of a finite volume scheme for the compressible (barotropic) Navier–Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results.


2019 ◽  
pp. 108-114
Author(s):  
A. G. Obukhov ◽  
L. I. Maksimov

The article presents the results of numerical simulation of the generation of free fire vortices in the laboratory without the use of special twisting devices. A. Yu. Varaksin, the corresponding member of the Russian Academy of Sciences, in his experimental studies has described the principal possibility of physical modeling of the occurrence of concentrated fire vortices.  In the model of a compressible continuous medium for the complete system of Navier — Stokes equations, an initial-boundary value problem has been proposed that describes complex three-dimensional unsteady flows of a viscous compressible heat-conducting gas in ascending swirling heat flows. We has constructed approximate solutions of the complete Navier — Stokes system of equations and has determined velocity characteristics of threedimensional unsteady gas flows initiated by local heating of the underlying surface by nineteen heat sources, using explicit difference schemes and the proposed initial-boundary conditions.  


2020 ◽  
Vol 28 (3) ◽  
pp. 209-216
Author(s):  
S. Singh ◽  
S. Saha Ray

AbstractIn this article, hybrid Legendre block-pulse functions are implemented in determining the approximate solutions for multi-dimensional stochastic Itô–Volterra integral equations. The block-pulse function and the proposed scheme are used for deriving a methodology to obtain the stochastic operational matrix. Error and convergence analysis of the scheme is discussed. A brief discussion including numerical examples has been provided to justify the efficiency of the mentioned method.


Sign in / Sign up

Export Citation Format

Share Document