scholarly journals Numerical approximation of fractional powers of regularly accretive operators

2016 ◽  
pp. drw042 ◽  
Author(s):  
Andrea Bonito ◽  
Joseph E. Pasciak
2019 ◽  
Vol 27 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Andrea Bonito ◽  
Wenyu Lei ◽  
Joseph E. Pasciak

Abstract We consider the finite element approximation of fractional powers of regularly accretive operators via the Dunford–Taylor integral approach. We use a sinc quadrature scheme to approximate the Balakrishnan representation of the negative powers of the operator as well as its finite element approximation. We improve the exponentially convergent error estimates from [A. Bonito and J. E. Pasciak, IMA J. Numer. Anal., 37 (2016), No. 3, 1245–1273] by reducing the regularity required on the data. Numerical experiments illustrating the new theory are provided.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
A. Khalid ◽  
M. N. Naeem ◽  
P. Agarwal ◽  
A. Ghaffar ◽  
Z. Ullah ◽  
...  

AbstractIn the current paper, authors proposed a computational model based on the cubic B-spline method to solve linear 6th order BVPs arising in astrophysics. The prescribed method transforms the boundary problem to a system of linear equations. The algorithm we are going to develop in this paper is not only simply the approximation solution of the 6th order BVPs using cubic B-spline, but it also describes the estimated derivatives of 1st order to 6th order of the analytic solution at the same time. This novel technique has lesser computational cost than numerous other techniques and is second order convergent. To show the efficiency of the proposed method, four numerical examples have been tested. The results are described using error tables and graphs and are compared with the results existing in the literature.


Author(s):  
Michele Benzi ◽  
Igor Simunec

AbstractIn this paper we propose a method to compute the solution to the fractional diffusion equation on directed networks, which can be expressed in terms of the graph Laplacian L as a product $$f(L^T) \varvec{b}$$ f ( L T ) b , where f is a non-analytic function involving fractional powers and $$\varvec{b}$$ b is a given vector. The graph Laplacian is a singular matrix, causing Krylov methods for $$f(L^T) \varvec{b}$$ f ( L T ) b to converge more slowly. In order to overcome this difficulty and achieve faster convergence, we use rational Krylov methods applied to a desingularized version of the graph Laplacian, obtained with either a rank-one shift or a projection on a subspace.


Sign in / Sign up

Export Citation Format

Share Document