scholarly journals Regularity of Weak Solution of Variational Problems Modeling the Cosserat Micropolar Elasticity

Author(s):  
Yimei Li ◽  
Changyou Wang

Abstract In this paper, we consider weak solutions of the Euler–Lagrange equation to a variational energy functional modeling the geometrically nonlinear Cosserat micropolar elasticity of continua in dimension three, which is a system coupling between the Poisson equation and the equation of $p$-harmonic maps ($2\le p\le 3$). We show that if a weak solution is stationary, then its singular set is discrete for $2<p<3$ and has zero one-dimensional Hausdorff measure for $p=2$. If, in addition, it is a stable-stationary weak solution, then it is regular everywhere when $p\in [2, \frac{32}{15}]$.

2021 ◽  
pp. 1-11
Author(s):  
Weicheng Huang ◽  
Longhui Qin ◽  
Qiang Chen

Abstract Motivated by the observations of snap-through phenomena in pre-stressed strips and curved shells, we numerically investigate the snapping of a pre-buckled hemispherical gridshell under apex load indentation. Our experimentally validated numerical framework on elastic gridshell simulation combines two components: (i) Discrete Elastic Rods method, for the geometrically nonlinear description of one dimensional rods; and (ii) a naive penalty-based energy functional, to perform the non-deviation condition between two rods at joint. An initially planar grid of slender rods can be actuated into a three dimensional hemispherical shape by loading its extremities through a prescribed path, known as buckling induced assembly; next, this pre-buckled structure can suddenly change its bending direction at some threshold points when compressing its apex to the other side. We find that the hemispherical gridshell can undergo snap-through buckling through two different paths based on two different apex loading conditions. The first critical snap-through point slightly increases as the number of rods in gridshell structure becomes denser, which emphasizes the mechanically nonlocal property in hollow grids, in contrast to the local response of continuum shells. The findings may bridge the gap among rods, grids, knits, and shells, for a fundamental understanding of a group of thin elastic structures, and inspire the design of novel micro-electro-mechanical systems and functional metamaterials.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 71 ◽  
Author(s):  
Valerio Faraoni

Several classic one-dimensional problems of variational calculus originating in non-relativistic particle mechanics have solutions that are analogues of spatially homogeneous and isotropic universes. They are ruled by an equation which is formally a Friedmann equation for a suitable cosmic fluid. These problems are revisited and their cosmic analogues are pointed out. Some correspond to the main solutions of cosmology, while others are analogous to exotic cosmologies with phantom fluids and finite future singularities.


2003 ◽  
Vol 2003 (43) ◽  
pp. 2735-2746 ◽  
Author(s):  
Ekaterina T. Kolkovska

We consider the one-dimensional Burgers equation perturbed by a white noise term with Dirichlet boundary conditions and a non-Lipschitz coefficient. We obtain existence of a weak solution proving tightness for a sequence of polygonal approximations for the equation and solving a martingale problem for the weak limit.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


VLSI Design ◽  
1998 ◽  
Vol 6 (1-4) ◽  
pp. 257-260
Author(s):  
Surinder P. Singh ◽  
Neil Goldsman ◽  
Isaak D. Mayergoyz

The Boltzmann transport equation (BTE) for multiple bands is solved by the spherical harmonic approach. The distribution function is obtained for energies greater than 3 eV. The BTE is solved self consistently with the Poisson equation for a one dimensional npn bipolar junction transistor (BJT). The novel features are: the use of boundary fitted curvilinear grid, and Scharfetter Gummel type discretization of the BTE.


Author(s):  
Emilio Acerbi ◽  
Domenico Mucci

We consider the total curvature of graphs of curves in high-codimension Euclidean space. We introduce the corresponding relaxed energy functional and prove an explicit representation formula. In the case of continuous Cartesian curves, i.e. of graphs cu of continuous functions u on an interval, we show that the relaxed energy is finite if and only if the curve cu has bounded variation and finite total curvature. In this case, moreover, the total curvature does not depend on the Cantor part of the derivative of u. We treat the wider class of graphs of one-dimensional functions of bounded variation, and we prove that the relaxed energy is given by the sum of the length and total curvature of the new curve obtained by closing the holes in cu generated by jumps of u with vertical segments.


Sign in / Sign up

Export Citation Format

Share Document