Moderately Discontinuous Homotopy

Author(s):  
Javier Fernández de Bobadilla ◽  
Sonja Heinze ◽  
Maria Pe Pereira

Abstract We introduce a metric homotopy theory, which we call moderately discontinuous homotopy, designed to capture Lipschitz properties of metric singular subanalytic germs. It matches with the moderately discontinuous homology theory recently developed by the authors and E. Sampaio. The $k$-th MD homotopy group is a group $MDH^b_{\bullet }$ for any $b\in [1,\infty ]$ together with homomorphisms $MD\pi ^b\to MD\pi ^{b^{\prime}}$ for any $b\geq b^{\prime}$. We develop all its basic properties including finite presentation of the groups, long homotopy sequences of pairs, metric homotopy invariance, Seifert van Kampen Theorem, and the Hurewicz Isomorphism Theorem. We prove comparison theorems that allow to relate the metric homotopy groups with topological homotopy groups of associated spaces. For $b=1$, it recovers the homotopy groups of the tangent cone for the outer metric and of the Gromov tangent cone for the inner one. In general, for $b=\infty $, the $MD$-homotopy recovers the homotopy of the punctured germ. Hence, our invariant can be seen as an algebraic invariant interpolating the homotopy from the germ to its tangent cone. We end the paper with a full computation of our invariant for any normal surface singularity for the inner metric. We also provide a full computation of the MD-homology in the same case.

2003 ◽  
Vol 10 (1) ◽  
pp. 77-98
Author(s):  
Marco Grandis

Abstract This is the sequel of a paper where we introduced an intrinsic ho-motopy theory and homotopy groups for simplicial complexes. We study here the relations of this homotopy theory with the well-known homology theory of simplicial complexes. Also, our investigation is aimed at applications in image analysis. A metric space 𝑋 representing an image, has a structure of simplicial complex at each resolution ε > 0, and the corresponding combinatorial homology groups give information on the image. Combining the methods developed here with programs for automatic computation of combinatorial homology might open the way to realistic applications.


1987 ◽  
Vol 101 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Alan Robinson

We introduce a new construction in stable homotopy theory. If F and G are module spectra over a ring spectrum E, there is no well-known spectrum of E-module homomorphisms from F to G. Such a construction would not be homotopy invariant, and therefore would not serve much purpose. We show that, provided the rings and modules have A∞ structures, there is a spectrum RHomE(F, G) of derived module homomorphisms which has very pleasant properties. It is homotopy invariant, exact in each variable, and its homotopy groups form the abutment of a hypercohomology-type spectral sequence.


1996 ◽  
Vol 48 (3) ◽  
pp. 483-495 ◽  
Author(s):  
Dominique Arlettaz

AbstractThis paper shows that for the Moore spectrum MG associated with any abelian group G, and for any positive integer n, the order of the Postnikov k-invariant kn+1(MG) is equal to the exponent of the homotopy group πnMG. In the case of the sphere spectrum S, this implies that the exponents of the homotopy groups of S provide a universal estimate for the exponent of the kernel of the stable Hurewicz homomorphism hn: πnX → En(X) for the homology theory E*(—) corresponding to any connective ring spectrum E such that π0E is torsion-free and for any bounded below spectrum X. Moreover, an upper bound for the exponent of the cokernel of the generalized Hurewicz homomorphism hn: En(X) → Hn(X; π0E), induced by the 0-th Postnikov section of E, is obtained for any connective spectrum E. An application of these results enables us to approximate in a universal way both kernel and cokernel of the unstable Hurewicz homomorphism between the algebraic K-theory of any ring and the ordinary integral homology of its linear group.


1978 ◽  
Vol 30 (01) ◽  
pp. 45-53 ◽  
Author(s):  
Donald M. Davis

The Brown-Peterson spectrum BP has been used recently to establish some new information about the stable homotopy groups of spheres [9; 11]. The best results have been achieved by using the associated homology theory BP* ( ), the Hopf algebra BP*(BP), and the Adams-Novikov spectral sequence


1991 ◽  
Vol 43 (4) ◽  
pp. 814-824 ◽  
Author(s):  
Robert J. Piacenza

The purpose of this paper is to introduce the notion of a CW complex over a topological category. The main theorem of this paper gives an equivalence between the homotopy theory of diagrams of spaces based on a topological category and the homotopy theory of CW complexes over the same base category.A brief description of the paper goes as follows: in Section 1 we introduce the homotopy category of diagrams of spaces based on a fixed topological category. In Section 2 homotopy groups for diagrams are defined. These are used to define the concept of weak equivalence and J-n equivalence that generalize the classical definition. In Section 3 we adapt the classical theory of CW complexes to develop a cellular theory for diagrams. In Section 4 we use sheaf theory to define a reasonable cohomology theory of diagrams and compare it to previously defined theories. In Section 5 we define a closed model category structure for the homotopy theory of diagrams. We show this Quillen type homotopy theory is equivalent to the homotopy theory of J-CW complexes. In Section 6 we apply our constructions and results to prove a useful result in equivariant homotopy theory originally proved by Elmendorf by a different method.


1985 ◽  
Vol 121 (1) ◽  
pp. 25-31 ◽  
Author(s):  
A. J. Berrick ◽  
K. H. Kamps

1990 ◽  
Vol 107 (3) ◽  
pp. 475-482 ◽  
Author(s):  
R. Ayala ◽  
A. Quintero ◽  
E. Dominguez

AbstractFollowing the techniques of ordinary homotopy theory, a theoretical treatment of proper homotopy theory, including the known proper homotopy groups, is provided within Baues's theory of cofibration categories.


2002 ◽  
Vol 132 (2) ◽  
pp. 197-234 ◽  
Author(s):  
ALAN ROBINSON ◽  
SARAH WHITEHOUSE

We introduce Γ-homology, the natural homology theory for E∞-algebras, and a cyclic version of it. Γ-homology specializes to a new homology theory for discrete commutative rings, very different in general from André–Quillen homology. We prove its general properties, including at base change and transitivity theorems. We give an explicit bicomplex for the Γ-homology of a discrete algebra, and elucidate connections with stable homotopy theory.


2006 ◽  
Vol 4 (1) ◽  
pp. 5-33
Author(s):  
Francisco Díaz ◽  
Sergio Rodríguez-Machín

AbstractGenerally, in homotopy theory a cylinder object (or, its dual, a path object) is used to define homotopy between morphisms, and a cone object is used to build exact sequences of homotopy groups. Here, an axiomatic theory based on a cone functor is given. Suspension objects are associated to based objects and cofibrations, obtaining homotopy groups referred to an object and relative to a cofibration, respectively. Exact sequences of these groups are built. Algebraic and particular examples are given. We point out that the main results of this paper were already stated in [3], and the purpose of this article is to give full details of the foregoing.


2021 ◽  
Vol 272 (1333) ◽  
Author(s):  
Gijs Heuts

We construct a Goodwillie tower of categories which interpolates between the category of pointed spaces and the category of spectra. This tower of categories refines the Goodwillie tower of the identity functor in a precise sense. More generally, we construct such a tower for a large class of ∞ \infty -categories C \mathcal {C} and classify such Goodwillie towers in terms of the derivatives of the identity functor of C \mathcal {C} . As a particular application we show how this provides a model for the homotopy theory of simply-connected spaces in terms of coalgebras in spectra with Tate diagonals. Our classification of Goodwillie towers simplifies considerably in settings where the Tate cohomology of the symmetric groups vanishes. As an example we apply our methods to rational homotopy theory. Another application identifies the homotopy theory of p p -local spaces with homotopy groups in a certain finite range with the homotopy theory of certain algebras over Ching’s spectral version of the Lie operad. This is a close analogue of Quillen’s results on rational homotopy.


Sign in / Sign up

Export Citation Format

Share Document