scholarly journals High-Throughput Screening of Kawasaki Disease Sera for Antiviral Antibodies

2020 ◽  
Vol 222 (11) ◽  
pp. 1853-1857 ◽  
Author(s):  
Daniel Quiat ◽  
Tomasz Kula ◽  
Chisato Shimizu ◽  
John T Kanegaye ◽  
Adriana H Tremoulet ◽  
...  

Abstract Clinical features of Kawasaki disease (KD) display overlap with common pediatric viral illnesses, leading some to hypothesize that a viral infection is the inciting event for KD. To investigate viral infection history in KD patients, we performed comprehensive serological profiling using a high-throughput phage immunoprecipitation sequencing assay covering the complete reference protein sequences of known viruses with human tropism. KD and matched febrile control sera did not demonstrate differences in antiviral antibody profiles. We conclude that in the acute and subacute phases of disease, KD patients do not exhibit serologic evidence of exposure to known viruses that differs from controls.

Author(s):  
Bryan E. Jones ◽  
Patricia L. Brown-Augsburger ◽  
Kizzmekia S. Corbett ◽  
Kathryn Westendorf ◽  
Julian Davies ◽  
...  

AbstractSARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection.One Sentence SummaryLY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Hingorani ◽  
NP Seeram ◽  
B Ebersole

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
K Georgousaki ◽  
N DePedro ◽  
AM Chinchilla ◽  
N Aliagiannis ◽  
F Vicente ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
LS Espindola ◽  
RG Dusi ◽  
KR Gustafson ◽  
J McMahon ◽  
JA Beutler

2014 ◽  
Author(s):  
Clair Cochrane ◽  
Halil Ruso ◽  
Anthony Hope ◽  
Rosemary G Clarke ◽  
Christopher Barratt ◽  
...  

2020 ◽  
Author(s):  
Jia Shen Chew ◽  
Ken Chi Lik Lee ◽  
THI THANH NHA HO

<p>Lee and coworkers offers a kind of new concept to enzyme immobilization and explores its suitability in the context of miniaturisation and high-throughput screening. Here, polystyrene-immobilized ketoreductases are compared with its non-immobilized counterparts in terms of conversion and stereoselectivity (both determined by chiral HPLC), and the study indicates that the BioBeads perform similarly (sometimes slightly more selective) which may be useful whenever defined micro-scale amounts of biocatalysts were required in high-throughput experiment settings.</p>


Sign in / Sign up

Export Citation Format

Share Document