Progressive emergence of an S153F plus R263K combination of integrase mutations in the proviral DNA of one individual successfully treated with dolutegravir

Author(s):  
Hanh T Pham ◽  
Brunna M Alves ◽  
Sunbin Yoo ◽  
Meng A Xiao ◽  
Jing Leng ◽  
...  

Abstract Objectives The development of HIV drug resistance against the integrase strand transfer inhibitor dolutegravir is rare. We report here the transient detection, by near full-genome ultradeep sequencing, of minority HIV-1 subtype B variants bearing the S153F and R263K integrase substitutions in the proviral DNA from blood cells of one patient who successfully initiated dolutegravir-based ART, over 24 weeks. Our objective was to study the effects of these substitutions. Methods Strand transfer and DNA-binding activities of recombinant integrase proteins were measured in cell-free assays. Cell-based resistance, infectivity and replicative capacities were measured using molecular clones. Structural modelling was performed to understand experimental results. Results R263K emerged first, followed by the addition of S153F at Week 12. By Week 24, both mutations remained present, but at lower prevalence. We confirmed the coexistence of S153F and R263K on single viral genomes. Combining S153F or S153Y with R263K decreased integration and viral replicative capacity and conferred high levels of drug resistance against all integrase inhibitors. Alone, S153Y and S153F did little to infectivity or dolutegravir resistance. We identified altered DNA binding as a mechanism of resistance. The patient remained with undetectable viral loads at all timepoints. Conclusions Drug-resistant minority variants have often been reported under suppressive ART. Our study adds to these observations by unravelling a progression towards higher levels of resistance through a novel pathway despite continuous undetectable viral loads. Poorly replicative HIV drug-resistant minority proviral variants did not compromise viral suppression in one individual treated with dolutegravir.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 306
Author(s):  
Vera M. Onwong'a ◽  
Rachael W. Gachogo ◽  
Moses M. Masika ◽  
Graeme B. Jacobs ◽  
Frank G. Onyambu

At the request of the authors, the article titled 'A low-cost in-house HIV integrase strand transfer inhibitor drug resistance test for resource-limited settings' ([version 1; peer review: awaiting peer review]. F1000Research 2021, 10:260, https://doi.org/10.12688/f1000research.28404.1) has been retracted from F1000Research. Since publication, it has come to the attention of the authors that the primers described in Table 1 were incorrect. As this article contains information which should not be publicly available the content of the article has been removed.  The authors apologise for this honest error, and intend to republish the article with the correct primer information. Unfortunately, Dr Graeme B. Jacobs has passed away since publication of version 1 of this article.


AIDS ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 1425-1434 ◽  
Author(s):  
Katherine J. Lepik ◽  
P. Richard Harrigan ◽  
Benita Yip ◽  
Lu Wang ◽  
Marjorie A. Robbins ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
N Ahmed ◽  
S Flavell ◽  
B Ferns ◽  
D Frampton ◽  
S G Edwards ◽  
...  

Abstract Dolutegravir (DTG), a second-generation integrase strand-transfer inhibitor (INSTI), is equivalent or superior to current non-nucleotide reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and first-generation INSTI-based antiretroviral regimens (ARVs). It has the potential to make big improvements in HIV control globally and within patients. This is perhaps the most “precious” HIV drug available. The integrase mutation R263K has been observed in tissue culture experiments and in patients treated with dolutegravir monotherapy in clinical trials. Globally, adherence and monitoring may be less than optimal and therefore DTG resistance more common. This is particularly important in low–middle-income countries, where patients may remain on failing regimens for longer periods of time and accumulate drug resistance. Data on this mutation in non–subtype B infections do not exist. We describe the first report of the R263K integrase mutation in a dolutegravir-exposed subtype D–infected individual with vertically acquired HIV. We have used deep sequencing of longitudinal samples to highlight the change in resistance over time while on a failing regimen. The case highlights that poorly adherent patients should not be offered dolutegravir even as part of a combination regimen and that protease inhibitors should be used preferentially.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Kimia Kamelian ◽  
Katherine J Lepik ◽  
William Chau ◽  
Benita Yip ◽  
Wendy W Zhang ◽  
...  

AbstractBackgroundIntegrase strand transfer inhibitors (INSTIs) are highly efficacious and well tolerated antiretrovirals with fewer adverse side-effects relative to other classes of antiretrovirals. The use of INSTIs raltegravir, elvitegravir, and dolutegravir has increased dramatically over recent years. However, there is limited information about the evolution and prevalence of INSTI resistance mutations in clinical human immunodeficiency virus populations.MethodsHuman immunodeficiency virus-1-positive individuals ≥19 years were included if they received ≥1 dispensed prescription of antiretroviral therapy (ART) in British Columbia between 2009 and 2016 (N = 9358). Physician-ordered drug resistance tests were analyzed and protease inhibitor (PI), reverse-transcriptase inhibitor (RT), and INSTI resistance were defined as having ≥1 sample with a combined, cumulative score ≥30 by Stanford HIV Drug Resistance Algorithm version 7.0.1.ResultsAlthough most ART-treated individuals were tested for PI and RT resistance, INSTI resistance testing lagged behind the uptake of INSTIs among INSTI-treated individuals (11% in 2009; 34% in 2016). The prevalence of INSTI resistance was relatively low, but it increased from 1 to 7 per 1000 ART-treated individuals between 2009 and 2016 (P < .0001, R2 = 0.98). Integrase strand transfer inhibitor resistance mutations increased at integrase codons 66, 97, 140, 148, 155, and 263.ConclusionsThe prevalence of INSTI resistance remains low compared with PI and RT resistance in ART-treated populations but is expanding with increased INSTI use.


2018 ◽  
Vol 5 (11) ◽  
Author(s):  
Kara S McGee ◽  
Nwora Lance Okeke ◽  
Christopher B Hurt ◽  
Mehri S McKellar

Abstract Transmitted drug resistance to the integrase strand transfer inhibitor (INSTI) class of antiretrovirals is very rare. We present a case of a treatment-naive female patient with human immunodeficiency virus harboring resistance to all INSTIs, including bictegravir and dolutegravir.


Author(s):  
Philip L Tzou ◽  
Soo-Yon Rhee ◽  
Diane Descamps ◽  
Dana S Clutter ◽  
Bradley Hare ◽  
...  

Abstract Background Integrase strand transfer inhibitors (INSTIs) are expected to be widely adopted globally, requiring surveillance of resistance emergence and transmission. Objectives We therefore sought to develop a standardized list of INSTI-resistance mutations suitable for the surveillance of transmitted INSTI resistance. Methods To characterize the suitability of the INSTI-resistance mutations for transmitted HIV-1 drug resistance (TDR) surveillance, we classified them according to their presence on published expert lists, conservation in INSTI-naive persons, frequency in INSTI-treated persons and contribution to reduced in vitro susceptibility. Mutation prevalences were determined using integrase sequences from 17 302 INSTI-naive and 2450 INSTI-treated persons; 53.3% of the INSTI-naive sequences and 20.0% of INSTI-treated sequences were from non-B subtypes. Approximately 10% of sequences were from persons who received dolutegravir alone or a first-generation INSTI followed by dolutegravir. Results Fifty-nine previously recognized (or established) INSTI-resistance mutations were present on one or more of four published expert lists. They were classified into three main non-overlapping groups: 29 relatively common non-polymorphic mutations, occurring in five or more individuals and significantly selected by INSTI treatment; 8 polymorphic mutations; and 22 rare mutations. Among the 29 relatively common INSTI-selected mutations, 24 emerged as candidates for inclusion on a list of INSTI surveillance drug-resistance mutations: T66A/I/K, E92G/Q, G118R, F121Y, E138A/K/T, G140A/C/S, Y143C/H/R/S, S147G, Q148H/R/K, N155H, S230R and R263K. Conclusions A set of 24 non-polymorphic INSTI-selected mutations is likely to be useful for quantifying INSTI-associated TDR. This list may require updating as more sequences become available from INSTI-experienced persons infected with HIV-1 non-subtype B viruses and/or receiving dolutegravir.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 594
Author(s):  
Kaelo K. Seatla ◽  
Dorcas Maruapula ◽  
Wonderful T. Choga ◽  
Tshenolo Ntsipe ◽  
Nametso Mathiba ◽  
...  

There are limited real-world mutational and virological outcomes data of treatment-experienced persons diagnosed with HIV-1 subtype C (HIV-1 C) who are failing Integrase Strand Transfer Inhibitor-based regimens. Requisition forms sent for HIV-1 genotypic resistance testing (GRT) between May 2015 and September 2019 were reviewed and participants experiencing virologic failure while on dolutegravir (DTG) or raltegravir (RAL) cART at sampling recruited. Sanger sequencing of the HIV-1 Pol gene was performed from residual plasma samples and drug resistance mutational (DRM) analysis performed using the Stanford University HIV drug resistance database. 40 HIV-1C integrase sequences were generated from 34 individuals, 24 of whom were on DTG cART, three on RAL cART and seven on an unknown (DTG or RAL)-anchored cART at time of GRT. 11/34 (32%) individuals had DRMs to DTG and other integrase inhibitors. 7/11 (64%) patients had exposure to a RAL-based cART at the time of sampling. Out of the 11 individuals with DRMs, one (9%) had 2-class, 6 (55%) had 3-class, and 4 (36%) had 4-class multidrug-resistant HIV-1C. 7/11 individuals (64%) are currently virologically suppressed. Of the four individuals not virologically suppressed, three had extensive DRMs involving 4-classes of ARV drugs and one individual has demised. Resistance to DTG occurs more often in patients exposed to RAL cART. Individuals with 4-class DRMs plus integrase T97 and E157Q mutations appear to have worse outcomes. There is a need for frequent VL monitoring and GRT amongst treatment-experienced HIV-1C diagnosed individuals.


Sign in / Sign up

Export Citation Format

Share Document