scholarly journals RNA and DNA Sanger sequencing versus next-generation sequencing for HIV-1 drug resistance testing in treatment-naive patients

2017 ◽  
Vol 72 (10) ◽  
pp. 2823-2830 ◽  
Author(s):  
E K Alidjinou ◽  
J Deldalle ◽  
C Hallaert ◽  
O Robineau ◽  
F Ajana ◽  
...  
2019 ◽  
Vol 121 ◽  
pp. 104207 ◽  
Author(s):  
Enagnon Kazali Alidjinou ◽  
Pauline Coulon ◽  
Christophe Hallaert ◽  
Olivier Robineau ◽  
Agnès Meybeck ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 340
Author(s):  
Rami Kantor

Drug resistance remains a global challenge in the fight against the HIV pandemic [...]


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 550 ◽  
Author(s):  
Emma R. Lee ◽  
Feng Gao ◽  
Paul Sandstrom ◽  
Hezhao Ji

Over the past decade, there has been an increase in the adoption of next generation sequencing (NGS) technologies for HIV drug resistance (HIVDR) testing. NGS far outweighs conventional Sanger sequencing as it has much higher throughput, lower cost when samples are batched and, most importantly, significantly higher sensitivities for variants present at low frequencies, which may have significant clinical implications. Despite the advantages of NGS, Sanger sequencing remains the gold standard for HIVDR testing, largely due to the lack of standardization of NGS-based HIVDR testing. One important aspect of standardization includes external quality assessment (EQA) strategies and programs. Current EQA for Sanger-based HIVDR testing includes proficiency testing where samples are sent to labs and the performance of the lab conducting such assays is evaluated. The current methods for Sanger-based EQA may not apply to NGS-based tests because of the fundamental differences in their technologies and outputs. Sanger-based genotyping reports drug resistance mutations (DRMs) data as dichotomous, whereas NGS-based HIVDR genotyping also reports DRMs as numerical data (percent abundance). Here we present an overview of the need to develop EQA for NGS-based HIVDR testing and some unique challenges that may be encountered.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 617 ◽  
Author(s):  
Santiago Ávila-Ríos ◽  
Neil Parkin ◽  
Ronald Swanstrom ◽  
Roger Paredes ◽  
Robert Shafer ◽  
...  

Higher accessibility and decreasing costs of next generation sequencing (NGS), availability of commercial kits, and development of dedicated analysis pipelines, have allowed an increasing number of laboratories to adopt this technology for HIV drug resistance (HIVDR) genotyping. Conventional HIVDR genotyping is traditionally carried out using population-based Sanger sequencing, which has a limited capacity for reliable detection of variants present at intra-host frequencies below a threshold of approximately 20%. NGS has the potential to improve sensitivity and quantitatively identify low-abundance variants, improving efficiency and lowering costs. However, some challenges exist for the standardization and quality assurance of NGS-based HIVDR genotyping. In this paper, we highlight considerations of these challenges as related to laboratory, clinical, and implementation of NGS for HIV drug resistance testing. Several sources of variation and bias occur in each step of the general NGS workflow, i.e., starting material, sample type, PCR amplification, library preparation method, instrument and sequencing chemistry-inherent errors, and data analysis options and limitations. Additionally, adoption of NGS-based HIVDR genotyping, especially for clinical care, poses pressing challenges, especially for resource-poor settings, including infrastructure and equipment requirements and cost, logistic and supply chains, instrument service availability, personnel training, validated laboratory protocols, and standardized analysis outputs. The establishment of external quality assessment programs may help to address some of these challenges and is needed to proceed with NGS-based HIVDR genotyping adoption.


Author(s):  
Andrea Arias ◽  
Pablo López ◽  
Raphael Sánchez ◽  
Yasuhiro Yamamura ◽  
Vanessa Rivera-Amill

The implementation of antiretroviral treatment combined with the monitoring of drug resistance mutations improves the quality of life of HIV-1 positive patients. The drug resistance mutation patterns and viral genotypes are currently analyzed by DNA sequencing of the virus in the plasma of patients. However, the virus compartmentalizes, and different T cell subsets may harbor distinct viral subsets. In this study, we compared the patterns of HIV distribution in cell-free (blood plasma) and cell-associated viruses (peripheral blood mononuclear cells, PBMCs) derived from ART-treated patients by using Sanger sequencing- and Next-Generation sequencing-based HIV assay. CD4+CD45RA−RO+ memory T-cells were isolated from PBMCs using a BD FACSAria instrument. HIV pol (protease and reverse transcriptase) was RT-PCR or PCR amplified from the plasma and the T-cell subset, respectively. Sequences were obtained using Sanger sequencing and Next-Generation Sequencing (NGS). Sanger sequences were aligned and edited using RECall software (beta v3.03). The Stanford HIV database was used to evaluate drug resistance mutations. Illumina MiSeq platform and HyDRA Web were used to generate and analyze NGS data, respectively. Our results show a high correlation between Sanger sequencing and NGS results. However, some major and minor drug resistance mutations were only observed by NGS, albeit at different frequencies. Analysis of low-frequency drugs resistance mutations and virus distribution in the blood compartments may provide information to allow a more sustainable response to therapy and better disease management.


2018 ◽  
Vol 56 (6) ◽  
Author(s):  
Philip L. Tzou ◽  
Pramila Ariyaratne ◽  
Vici Varghese ◽  
Charlie Lee ◽  
Elian Rakhmanaliev ◽  
...  

ABSTRACTThe ability of next-generation sequencing (NGS) technologies to detect low frequency HIV-1 drug resistance mutations (DRMs) not detected by dideoxynucleotide Sanger sequencing has potential advantages for improved patient outcomes. We compared the performance of anin vitrodiagnostic (IVD) NGS assay, the Sentosa SQ HIV genotyping assay for HIV-1 genotypic resistance testing, with Sanger sequencing on 138 protease/reverse transcriptase (RT) and 39 integrase sequences. The NGS assay used a 5% threshold for reporting low-frequency variants. The level of complete plus partial nucleotide sequence concordance between Sanger sequencing and NGS was 99.9%. Among the 138 protease/RT sequences, a mean of 6.4 DRMs was identified by both Sanger and NGS, a mean of 0.5 DRM was detected by NGS alone, and a mean of 0.1 DRM was detected by Sanger sequencing alone. Among the 39 integrase sequences, a mean of 1.6 DRMs was detected by both Sanger sequencing and NGS and a mean of 0.15 DRM was detected by NGS alone. Compared with Sanger sequencing, NGS estimated higher levels of resistance to one or more antiretroviral drugs for 18.2% of protease/RT sequences and 5.1% of integrase sequences. There was little evidence for technical artifacts in the NGS sequences, but the G-to-A hypermutation was detected in three samples. In conclusion, the IVD NGS assay evaluated in this study was highly concordant with Sanger sequencing. At the 5% threshold for reporting minority variants, NGS appeared to attain a modestly increased sensitivity for detecting low-frequency DRMs without compromising sequence accuracy.


Sign in / Sign up

Export Citation Format

Share Document