scholarly journals Role of von Willebrand Factor in COVID-19 Associated Coagulopathy

Author(s):  
Zhen W Mei ◽  
Xander M R van Wijk ◽  
Huy P Pham ◽  
Maximo J Marin

Abstract Background COVID-19, the disease caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) can present with symptoms ranging from none to severe. Thrombotic events occur in a significant number of patients with COVID-19, especially in critically ill patients. This apparent novel form of coagulopathy is termed COVID-19 associated coagulopathy and endothelial derived von Willebrand factor (vWF) may play an important role in its pathogenesis. Content vWF is a multimeric glycoprotein molecule that is involved in inflammation, primary and secondary hemostasis. Studies have shown that patients with COVID-19 have significantly elevated levels of vWF antigen and activity, likely contributing to an increased risk of thrombosis seen in CAC. The high levels of both vWF antigen and activity have been clinically correlated with worse outcomes. Furthermore, the severity of a COVID-19 infection appears to reduce molecules that regulate vWF level and activity such as ADAMT-13 and high density lipoproteins (HDL). Finally, studies have suggested that patients with blood group O (a blood group with lower than baseline levels of vWF) have a lower risk of infection and disease severity compared to other blood groups; however, more studies are needed to elucidate the role of vWF Summary CAC is a significant contributor to morbidity and mortality. Endothelial dysfunction with the release of pro-thrombotic factors, such as vWF, needs further examination as a possible important component in the pathogenesis CAC.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2234-2234 ◽  
Author(s):  
Orla Rawley ◽  
Jamie O'Sullivan ◽  
Gudmundur Bergsson ◽  
Alain Chan ◽  
Rachel Therese McGrath ◽  
...  

Abstract Abstract 2234 Von Willebrand Factor (VWF) is extensively glycosylated with both N- and O-linked carbohydrates. Moreover, these complex glycan structures influence VWF functional properties, including susceptibility to ADAMTS13 proteolysis, and plasma clearance. The molecular mechanisms through which VWF glycosylation (including ABO blood group antigens) act to influence VWF physiology remains unexplained. However, recent data suggest that VWF circulates in normal plasma bound to various carbohydrate-binding proteins, including specific members of the galectin family. In addition, galectin-3 binding has been reported to influence VWF cleavage by ADAMTS13. In this context, we sought to elucidate the role of specific VWF glycan determinants in modulating galectin interaction. VWF was purified from human plasma (pdVWF) by cryoprecipitation and gel filtration. VWF glycosylation was then modified using exoglycosidases and quantified by specific lectin ELISAs. Blood group specific VWF was also purified from pooled group AB, O, or Bombay plasmas. Galectins-1 and -3 were transiently expressed in competent E-coli cells with an N-terminal histidine tag, and purified by nickel chromatography. Finally, binding interactions were characterized via modified immunosorbant assay. In keeping with the previous report of Lenting et al, human pdVWF bound to both galectin-1 and galectin-3 in a dose-dependent manner. Enzymatic desialylation of pdVWF with α2-3,6,8,9 neuraminidase (Neu-VWF) markedly enhanced binding to galectin-1 (231±6%, p<0.0001). Similarly, removal of terminal sialic acid also increased binding to galectin-3, albeit to a lesser extent (136±6%, p<0.05). To further define the role of VWF glycans in regulating galectin binding, pdVWF was exposed to sequential neuraminidase and galactosidase digestions to remove terminal sialic acid and sub-terminal galactose residues (NeuGal-VWF). In contrast to the enhanced binding of Neu-VWF, binding of NeuGal-VWF to both galectin -1 and -3 was significantly reduced (51±5% and 52±6% compared to pdVWF; p<0.005). Cumulatively these findings suggest that loss of capping sialic acid and exposure of sub-terminal galactose critically regulates VWF-galectin binding. Treatment with PNGase F to completely remove N-linked carbohydrate structures (PNG-VWF) markedly decreased binding to galectin -1 and -3 (13±1% and 57±2%, p<0.001). Moreover, combined PNGase F and O-glycosidase digestions further attenuated galectin-3 binding (21±1%, p<0.001), suggesting that both the N- and O-linked glycans are involved in mediating the VWF-galectin interaction. ABO(H) blood group antigens are expressed on both the N-linked and O-linked glycans of human VWF. Moreover, ABO(H) determinants influence VWF susceptibility to ADAMTS13 proteolysis and plasma VWF half-life, through unknown mechanisms. Purified VWF from normal group AB individuals bound to both galectin-1 and galectin-3 significantly better than group O VWF (146±8% and 483±19%; p<0.01). Conversely, no significant difference in binding was observed between Group O and Bombay VWF. Consequently, although terminal A (GalNAc) and B (Gal) sugar moieties promote galectin binding, expression of terminal α1–2 fucose residues is not important. The glycosylation profile of platelet-VWF differs from that of pdVWF. In particular, platelet-VWF expresses reduced levels of both capping sialic acid and sub-terminal galactose residues (∼50%), and lacks AB blood group antigens. To characterize the effects of this differential sugar expression on galectin binding, platelet-derived VWF was isolated and purified (platelet freeze-thawing followed by immuno-affinity chromatography with monoclonal CLB-Rag20). In keeping with the reduction in Gal and AB blood group antigen expression, platelet VWF bound less well to galectin-1 and galectin-3 (72±6% and 67±7% versus pdVWF; p<0.05). These novel data demonstrate that both the N- and O-linked oligosaccharide structures of VWF are involved in mediating galectin binding. In particular, expression of terminal AB blood group antigens, and expression of sub-terminal galactose moieties following loss of capping sialic acid, both markedly enhance galectin binding affinity. Further studies will be required to define how galectin binding is involved in mediating the functional consequences of variation in VWF glycans. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 118 (06) ◽  
pp. 959-978 ◽  
Author(s):  
Nina Buchtele ◽  
Michael Schwameis ◽  
James Gilbert ◽  
Christian Schörgenhofer ◽  
Bernd Jilma

AbstractDespite great efforts in stroke research, disability and recurrence rates in ischaemic stroke remain unacceptably high. To address this issue, one potential target for novel therapeutics is the glycoprotein von Willebrand factor (vWF), which increases in thrombogenicity especially under high shear rates as it bridges between vascular sub-endothelial collagen and platelets. The rationale for vWF as a potential target in stroke comes from four bodies of evidence. (1) Animal models which recapitulate the pathogenesis of stroke and validate the concept of targeting vWF for stroke prevention and the use of the vWF cleavage enzyme ADAMTS13 in acute stroke treatment. (2) Extensive epidemiologic data establishing the prognostic role of vWF in the clinical setting showing that high vWF levels are associated with an increased risk of first stroke, stroke recurrence or stroke-associated mortality. As such, vWF levels may be a suitable marker for further risk stratification to potentially fine-tune current risk prediction models which are mainly based on clinical and imaging data. (3) Genetic studies showing an association between vWF levels and stroke risk on genomic levels. Finally, (4) studies of patients with primary disorders of excess or deficiency of function in the vWF axis (e.g. thrombotic thrombocytopenic purpura and von Willebrand disease, respectively) which demonstrate the crucial role of vWF in atherothrombosis. Therapeutic inhibition of VWF by novel agents appears particularly promising for secondary prevention of stroke recurrence in specific sub-groups of patients such as those suffering from large artery atherosclerosis, as designated according to the TOAST classification.


2000 ◽  
Vol 109 (4) ◽  
pp. 857-864 ◽  
Author(s):  
Ravindra Sarode ◽  
Jack Goldstein ◽  
Ira I. Sussman ◽  
Ronald L. Nagel ◽  
Han-Mou Tsai

2021 ◽  
Vol 14 (4) ◽  
pp. 101033
Author(s):  
Chia Yin Goh ◽  
Sean Patmore ◽  
Albert Smolenski ◽  
Jane Howard ◽  
Shane Evans ◽  
...  

1987 ◽  
Vol 516 (1 Blood in Cont) ◽  
pp. 52-65 ◽  
Author(s):  
KJELL S. SAKARIASSEN ◽  
EDITH FRESSINAUD ◽  
JEAN-PIERRE GIRMA ◽  
DOMINIQUE MEYER ◽  
HANS R. BAUMGARTNER

Sign in / Sign up

Export Citation Format

Share Document