Role of Platelet Membrane Glycoproteins and Von Willebrand Factor in Adhesion of Platelets to Subendothelium and Collagen

1987 ◽  
Vol 516 (1 Blood in Cont) ◽  
pp. 52-65 ◽  
Author(s):  
KJELL S. SAKARIASSEN ◽  
EDITH FRESSINAUD ◽  
JEAN-PIERRE GIRMA ◽  
DOMINIQUE MEYER ◽  
HANS R. BAUMGARTNER
1981 ◽  
Author(s):  
F Fauvel ◽  
Y J Legrand ◽  
N Gutman ◽  
J P Muh ◽  
G Tobelem ◽  
...  

It has been shown that collagenase resistant arterial microfibrils (MF) are able to interact with platelets and therefore represents, besides collagen, a second thrombogenic structure in the vessel wall. In vitro observation using a PMC purified from the villosities of human placenta by a mechanical non denaturing procedure confirm this interaction between platelets and MF. PMC was homogenous under electron microscope (feltwork of MF with a mean diameter of 120 – 130 A) and was glycoproteic in nature. PMC were able to induce an aggregation of human platelets only if the platelets were in plasma. The role of Von Willebrand factor (F VIII/WF) as a cofactor of the aggregation of platelets by MF has been postulated from the fact that twice washed platelets from normal subject resuspended in PPP obtained from a severe Von Willebrand deficient patient were not aggregated by the PMC. Furthermore, aggregation was restored after resuspension of the same platelets in the PPP of the same patient 30 and 120 minutes after perfusion of cryoprecipitate (40 units F VIII/RA per kg).F VIII/WF mediates platelet adhesion after binding to subendothelium of human artery. Our observation strongly supports the idea that MF are the subendothelial components to which F VIII/WF binds, thus promoting an adhesion of platelets.


1987 ◽  
Author(s):  
M Aihara ◽  
S Morimoto ◽  
Y Sawada ◽  
A Kimura ◽  
Y Chiba ◽  
...  

To determine a role of platelet membrane components on the interaction of platelet-collagen-von Willebrand factor(vWF), several experimental approaches were used. The adhesion of human fixed washed platelets(FWP) to collagen was decreased after the treatment with Serratia marcescens protease(100 ug/ml), but the collagen cofactor activity(COo) of vWF that enhances the adhesion of FWP to collagen was still present after the digestion. Although the platelet adhesion in the absence of normal plasma was not changed by the addition of monoclonal antibody(M-ab) against platelet membrane glycoprotein(GP) IIb/lIIa(1 0E5, BS Coller), the adhesion was decreased by 30-50% after the treatment of the platelets with 10-100 ug/ml anti-GPIb(6D1, BS Coller). The adhesion of FWP to collagen was inhibited by lectins;the adhesion was 58-75% in the presence of 100-400 ug/ml L. culinaris lectin or weat germ agglutinin and the adhesion was nil in the presence of 100 ug/ml Ricinus communis agglutinin I or 200 ug/ml concanavalin A. By the crossed aff ino-immunoelectrophoresis, the binding of GP Ilb/lIIa in Triton-solubilized platelet supernatant to the collagen spacer gel was observed. When CHAPSO solubilized platelet was applied to the collagen column and the fractions containing adhesion inhibitor were eluated by 0.3M NaCl, Mr of 240K, 220K, 21 OK, 116K, 61K, 54K, 50K and 45K proteins were identified besides the proteins which correspond to thrombospondin, GPIb, GP lib or Ilia by SDS-PAGE(7.5% gel, silver stain). GOo in normal plasma was not changed by anti-GPIIb/lIIa but was decreased to 32-38%by anti-GPIb. M-ab against vWF, CLB-RAg 35(van Mourik), that inhibits the binding of vWF to platelet by ristocetin decreased COo in normal plasma by 70% and CLB-RAg 201 (van Mourik) that inhibits the binding of vWF to collagen did completely inhibit the COo in normal plasma. In conclusion, our data suggest that (1) GPIb is partly involved in the platelet adhesion to collagen; (2) the binding of vWF to collagen is required for the expression of CCo; (3) CCo of vWF is partly mediated though GPIb; and (4) several platelet membrane protein(s) besides GPIb or GPIIb/lIIa may be also involved in both the adhesion of platelets to collagen and CCo of vWF.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 173-177
Author(s):  
ME Rick ◽  
DM Krizek

Factor VIII functions as a cofactor in the intrinsic coagulation pathway and must first be activated to function optimally in this capacity. Low concentrations of thrombin activate factor VIII, and the presence of stimulated platelets is known to enhance the activation of factor VIII complexed to von Willebrand factor. The current studies show that platelets stimulated by thrombin, collagen, or calcium ionophore will increase the activation of isolated factor VIII by thrombin. Ongoing platelet release is not necessary for the enhanced factor VIII activation, nor is platelet von Willebrand factor or platelet membrane glycoproteins Ib or IIb/IIIa. Platelet membrane phospholipids, on the other hand, are important for the enhanced activation of factor VIII by thrombin because the effect of stimulated platelets is abolished by incubation of the stimulated platelets with phospholipases. These results suggest that the enhanced activation of factor VIII by thrombin in the presence of stimulated platelets may be mediated by factor VIII binding to platelet phospholipid or to a receptor whose functional integrity is dependent on surrounding membrane phospholipid.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 927-937
Author(s):  
FM LaDuca ◽  
RE Bettigole ◽  
WR Bell ◽  
EB Robson

The contribution of von Willebrand factor (vWF)-platelet binding to platelet-collagen interaction was examined in vitro. The binding of vWF to platelets was mediated and regulated by ristocetin. Subthreshold concentrations of ristocetin (less than or equal to 1 mg/mL), insufficient to cause ristocetin-induced platelet aggregation (RIPA), were added to platelet-rich plasma (PRP) prior to the addition of collagen. The collagen-induced platelet aggregation (CIPA) was modified by ristocetin and the degree of alteration was dependent on the ristocetin concentration. Response as a function of ristocetin concentration was designated the Collagen-Platelet Aggregation Response (CoI-PAR). In normal PRP the CoI-PAR was a progressive inhibition followed by decreasing inhibition and then an enhanced response. The enhanced response occurred over a narrow range of ristocetin concentrations (0.8 to 1.0 mg/mL). In the absence of vWF (severe von Willebrand's disease, Type I, vWF less than 1%) the CoI-PAR was a progressive, eventually complete inhibition with no enhanced response (with ristocetin concentrations up to 3.0 mg/mL). With addition of vWF to this PRP an enhanced response was observed at a ristocetin concentration inversely proportional to the vWF level. PRP from a patient with severe Hemophilia A showed a response within the normal range. Subthreshold ristocetin did not cause plasma protein precipitation or platelet release of 3H-serotonin, nor induce micro platelet aggregate formation. Digestion of platelet membrane glycoproteins (GP(s] with chymotrypsin demonstrated that upon removal of GPI, RIPA was absent, CIPA retained and the CoI-PAR was progressive inhibition, with no enhancement. With removal of GPs I, II, and III, RIPA, CIPA, and the CoI-PAR were absent. A dose-response 125I-vWF- platelet binding occurred with increasing ristocetin concentrations which was unchanged by the addition of collagen. These results demonstrated that ristocetin-platelet association inhibited CIPA, and vWF-platelet binding enhanced platelet-collagen adhesion and platelet aggregation. The in vitro-enhanced CIPA represents a vWF-dependent aggregation of sufficient magnitude to overcome the inhibitory effect of ristocetin. These studies demonstrate an influential interaction of ristocetin, vWF, and collagen with the platelet membrane and imply an important hemostatic contribution of vWF-platelet binding in platelet- collagen interaction.


1987 ◽  
Author(s):  
A Ordinas ◽  
E Bastida ◽  
M Garrido ◽  
J Monteagudo ◽  
L de Marco ◽  
...  

Native Von Willebrand factor (NvWF) binds to platelets activated by thrombin, ADP or ristocetin, and also supports the adhesion of platelets to subendothelium at high shear rates. In contrast, asialo von Willebrand factor (AvWF) induces platelet aggregation in absence of platelet activators. We investigated the role of AvWF in supporting the adhesion of platelets to rabbit vessel subendothelium under flow conditions at a shear rate of 2000 sec-1 for 5 min using the Baumgartner perfusion system. We also studied the effects of blockage of platelet GPIb or GPIIb/IIIa on platelet adhesion using monoclonal antibodies (Mabs),and we measured the rate of binding of 111I-labeled NvWF and AvWF to subendothelium. Perfusates consisted of washed platelts and red cells resuspended in a 4% human albumin solution to which increasing concentrations of NvWF or AvWF had been added. Platelets interacting with the perfused vessels were evaluated morphometrically using a computerized system. At a concentration of 1.2 /ig/ml the percentage of total coverage surface was 21.3 ± 4.8% and 40.0±14.6%, for NvWF and AvWF, respectively (p<0.01). Addition of either Mab against GPIb (LJlbl) or against GPIIb/IIIa (CP8) to the perfusates, reduced platelet deposition (p <0.01). The rates of binding of 111I-labeled NvWF and AvWF to perfused vessel subendothelium were similar (0.83±0.1μg and 0.95±0.1 μg ,respectively).Our results indicate that AvWF enhances the interaction of washed platelets with the vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is related to the interaction of AvWF with platelets and not to an increased affinity of AvWF for subendothelium.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 173-177 ◽  
Author(s):  
ME Rick ◽  
DM Krizek

Abstract Factor VIII functions as a cofactor in the intrinsic coagulation pathway and must first be activated to function optimally in this capacity. Low concentrations of thrombin activate factor VIII, and the presence of stimulated platelets is known to enhance the activation of factor VIII complexed to von Willebrand factor. The current studies show that platelets stimulated by thrombin, collagen, or calcium ionophore will increase the activation of isolated factor VIII by thrombin. Ongoing platelet release is not necessary for the enhanced factor VIII activation, nor is platelet von Willebrand factor or platelet membrane glycoproteins Ib or IIb/IIIa. Platelet membrane phospholipids, on the other hand, are important for the enhanced activation of factor VIII by thrombin because the effect of stimulated platelets is abolished by incubation of the stimulated platelets with phospholipases. These results suggest that the enhanced activation of factor VIII by thrombin in the presence of stimulated platelets may be mediated by factor VIII binding to platelet phospholipid or to a receptor whose functional integrity is dependent on surrounding membrane phospholipid.


Blood ◽  
1986 ◽  
Vol 68 (4) ◽  
pp. 927-937 ◽  
Author(s):  
FM LaDuca ◽  
RE Bettigole ◽  
WR Bell ◽  
EB Robson

Abstract The contribution of von Willebrand factor (vWF)-platelet binding to platelet-collagen interaction was examined in vitro. The binding of vWF to platelets was mediated and regulated by ristocetin. Subthreshold concentrations of ristocetin (less than or equal to 1 mg/mL), insufficient to cause ristocetin-induced platelet aggregation (RIPA), were added to platelet-rich plasma (PRP) prior to the addition of collagen. The collagen-induced platelet aggregation (CIPA) was modified by ristocetin and the degree of alteration was dependent on the ristocetin concentration. Response as a function of ristocetin concentration was designated the Collagen-Platelet Aggregation Response (CoI-PAR). In normal PRP the CoI-PAR was a progressive inhibition followed by decreasing inhibition and then an enhanced response. The enhanced response occurred over a narrow range of ristocetin concentrations (0.8 to 1.0 mg/mL). In the absence of vWF (severe von Willebrand's disease, Type I, vWF less than 1%) the CoI-PAR was a progressive, eventually complete inhibition with no enhanced response (with ristocetin concentrations up to 3.0 mg/mL). With addition of vWF to this PRP an enhanced response was observed at a ristocetin concentration inversely proportional to the vWF level. PRP from a patient with severe Hemophilia A showed a response within the normal range. Subthreshold ristocetin did not cause plasma protein precipitation or platelet release of 3H-serotonin, nor induce micro platelet aggregate formation. Digestion of platelet membrane glycoproteins (GP(s] with chymotrypsin demonstrated that upon removal of GPI, RIPA was absent, CIPA retained and the CoI-PAR was progressive inhibition, with no enhancement. With removal of GPs I, II, and III, RIPA, CIPA, and the CoI-PAR were absent. A dose-response 125I-vWF- platelet binding occurred with increasing ristocetin concentrations which was unchanged by the addition of collagen. These results demonstrated that ristocetin-platelet association inhibited CIPA, and vWF-platelet binding enhanced platelet-collagen adhesion and platelet aggregation. The in vitro-enhanced CIPA represents a vWF-dependent aggregation of sufficient magnitude to overcome the inhibitory effect of ristocetin. These studies demonstrate an influential interaction of ristocetin, vWF, and collagen with the platelet membrane and imply an important hemostatic contribution of vWF-platelet binding in platelet- collagen interaction.


Sign in / Sign up

Export Citation Format

Share Document