scholarly journals Spectrophotometric Determination of Certain Antidepressants in Pharmaceutical Preparations

2006 ◽  
Vol 89 (4) ◽  
pp. 966-971 ◽  
Author(s):  
ArmaĞan Önal ◽  
Ş. Evrim Kepeki ◽  
S MÜge Çetin ◽  
Sidika ErtÜrk

Abstract Simple and reproducible spectrophotometric methods have been developed for determination of sertraline, fluoxetine, and venlafaxine in pharmaceutical preparations. The methods are based on the reactions between the studied drug substances and ion-pair agents (bromothymol blue, bromocresol green, or bromophenol blue) to produce yellow-colored ion-pair complexes in acidic buffers. After extracting in chloroform, the ion-pair complexes are spectrophotometrically determined at the optimum wavelength. Optimizations of the reaction conditions were carried out. Beer's law was obeyed within the concentration range from 1 to 15 μg/mL. The molar absorptivity, Sandell sensitivity, and detection and quantification limits were also determined. The developed methods were applied successfully for the determination of these drugs in some available commercial preparations. The results were compared statistically with those obtained from reported high-performance liquid chromatography methods.

2010 ◽  
Vol 16 (4) ◽  
pp. 353-362 ◽  
Author(s):  
P.J. Ramesh ◽  
K. Basavaiah ◽  
Zenita Devi ◽  
K.B. Vinay

Two simple, sensitive, economical and extraction-free spectrophotometric methods have been developed for the determination of ofloxacin (OFX) in pure form and in tablets. The methods are based on the interaction of OFX with two sulphonphthalein dyes, namely, bromothymol blue (method A) and bromophenol blue (method B) in dichloromethane medium to form stable, yellow-colored ion-pair complexes peaking at 410 nm. Under the optimum conditions, OFX could be assayed in the concentration ranges, 1.25-20 and 1.0-16 ?g mL-1 OFX by method A and method B, respectively, with correlation coefficient of 0.999 in both methods. The apparent molar absorptivity values are calculated to be 1.74 x 104 and 2.18 x 104, L moL-1 cm-1, for method A and method B, respectively, with corresponding Sandell sensitivity values of 0.021 and 0.017 ?g cm-2. The limits of detection (LOD) and quantification (LOQ) are also reported. The stoichiometry of the reaction was found to be 1:1 in both cases and the conditional stability constant (Kf) of the complexes have also been reported. The intra-day and inter-day variation was assessed. The methods were applied to determine OFX from marked tablet formulations. Statistical analysis proved that the proposed methods were both accurate and precise.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Ayman A. Gouda ◽  
Alaa S. Amin ◽  
Ragaa El-Sheikh ◽  
Amira G. Yousef

Simple, rapid, and extractive spectrophotometric methods were developed for the determination of some fluoroquinolones antibiotics: gemifloxacin mesylate (GMF), moxifloxacin hydrochloride (MXF), and enrofloxacin (ENF) in pure forms and pharmaceutical formulations. These methods are based on the formation of ion-pair complexes between the basic drugs and acid dyes, namely, bromocresol green (BCG), bromocresol purple (BCP), bromophenol blue (BPB), bromothymol blue (BTB), and methyl orange (MO) in acidic buffer solutions. The formed complexes were extracted with chloroform and measured at 420, 408, 416, 415, and 422 nm for BCG, BCP, BPB, BTB, and MO, respectively, for GMF; at 410, 415, 416, and 420 nm for BCP, BTB, BPB, and MO, respectively, for MXF; and at 419 and 414 nm for BCG and BTB, respectively, in case of ENF. The analytical parameters and their effects are investigated. Beer’s law was obeyed in the ranges 1.0–30, 1.0–20, and 2.0–24 μg mL−1for GMF, MXF, and ENF, respectively. The proposed methods have been applied successfully for the analysis of the studied drugs in pure forms and pharmaceutical formulations. Statistical comparison of the results with the reference methods showed excellent agreement and indicated no significant difference in accuracy and precision.


2015 ◽  
Vol 17 (1) ◽  
pp. 25-31
Author(s):  
Jasmin Shah ◽  
M Rasul Jan ◽  
Muhammad Tariq Shah

Simple, precise and sensitive extractive spectrophotometric methods have been developed for the determination of domperidone in pharmaceutical formulations. The new methods involve the formation of colored extractable ion pair complexes of the drug with bromothymol blue (BTB) and bromophenol blue (BPB) in acidic medium. The effects of various parameters like pH, reagent concentration and shaking time were studied. The extracted complexes of domperidone showed maximum absorbance at 410 nm with BTB and at 415 nm with BPB dye. The stiochiometry of the reaction between domperidone, BTB and BPB was found to be 1: 4. Domperidone was found to obey Beer’s law in the concentration ranges of 0.6-35 ?g/ml, 1-30 ?g/ml with BTB and BPB, respectively. The method has been applied successfully for the determination of domperidone in commercial tablets and suspension samples. The results obtained by the proposed methods were validated statistically and compared with the official HPLC method. DOI: http://dx.doi.org/10.3329/bpj.v17i1.22310 Bangladesh Pharmaceutical Journal 17(1): 25-31, 2014


2011 ◽  
Vol 8 (4) ◽  
pp. 1784-1796 ◽  
Author(s):  
Sara M. Anis ◽  
Mervat M. Hosny ◽  
Hisham E. Abdellatef ◽  
Mohamed N. El-Balkiny

Four simple, sensitive and reproducible methods were developed for the determination of gabapentin (GPT) in pure form and in pharmaceutical preparations. Methods A and B are based on the reaction of cupric chloride with gabapentin to form stable complex, which could be measured spectrophotometrically at λmax246 nm (method A) or by using conductometric technique (method B). While method C and D depends on the formation of ion pair complex between the studied drug and bromothymol blue, bromocresol green respectively this was extractable with methylene chloride. The concentration ranges were 40-95 μg mL-1, 1-15 mg, 100-800 and 10-150 μg mL-1for methods A, B, C and D respectively .The optimization of various experimental conditions were described .The results obtained showed good recoveries, Ringbom optimum concentration ranges were calculated, in addition to molar absorptivity and sandell’s sensitivity, detection and quantification limits. The methods were successfully applied to the determination of GPT in bulk and pharmaceutical preparations. The results were favorably comparable with the official method. The molar combining ratio for methods (A-B) was found to be (2:1) (drug: reagent) while for method (C-D) it was found to be (1:1).


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Trung Dung Nguyen ◽  
Hoc Bau Le ◽  
Thi Oanh Dong ◽  
Tien Duc Pham

In this paper, we reported a new, simple, accurate, and precise extractive spectrophotometric method for the determination of fluoroquinolones (FQs) including ciprofloxacin (CFX), levofloxacin (LFX), and ofloxacin (OFX) in pharmaceutical formulations. The proposed method is based on the ion-pair formation complexes between FQs and an anionic dye, bromothymol blue (BTB), in acidic medium. The yellow-colored complexes which were extracted into chloroform were measured at the wavelengths of 420, 415, and 418 nm for CFX, LFX, and OFX, respectively. Some effective conditions such as pH, dye concentration, shaking time, and organic solvents were also systematically studied. Very good limit of detection (LOD) of 0.084 µg/mL, 0.101 µg/mL, and 0.105 µg/mL were found for CFX, LFX, and OFX, respectively. The stoichiometry of the complexes formed between FQs and BTB determined by Job’s method of continuous variation was 1 : 1. No interference was observed from common excipients occurred in pharmaceutical formulations. The proposed method has been successfully applied to determine the FQs in some pharmaceutical products. A good agreement between extractive spectrophotometric method with high-performance liquid chromatography mass spectrometry (HPLC-MS) for the determination of FQs in some real samples demonstrates that the proposed method is suitable to quantify FQs in pharmaceutical formulations.


Author(s):  
RAGAA EL SHEIKH ◽  
WAFAA S HASSAN ◽  
MARWA M EL-GABRY ◽  
AYMAN A GOUDA ◽  
SALEH S IDRIS ◽  
...  

Objective: Simple, sensitive, precise, reproducible, and validated visible spectrophotometric methods have been developed for the determination of leukotriene receptor antagonist drug, namely, montelukast (MNT) sodium in bulk and pharmaceutical preparations. Methods: Three spectrophotometric methods are based on the formation of yellow-colored ion-pair complexes between MNT sodium and three dyes, bromocresol green, bromophenol blue, and methyl orange with absorption maxima at 420, 416, and 426 nm, respectively. Results: The stoichiometric ratio of the formed ion-pair complexes was found to be 1:1 (drug:reagent) for all methods, as deduced by Job’s method of continuous variation. Several parameters such as pH, buffer type and volume, reagent volume, sequence of addition, and effect of extracting solvent were optimized to achieve high sensitivity, stability, low blank reading, and reproducible results. Under the optimum conditions, linear relationships with good correlation coefficients (0.9993–0.9999) were found over the concentration ranges of 1.0–10, 1.0–12, and 1.0–16 μg/mL with a limit of detection of 0.30, 0.29, and 0.27 μg/mL for bromocresol green, bromophenol blue, and methyl orange methods, respectively. Conclusion: The proposed methods were validated in accordance with ICH guidelines and successfully applied to the analysis of MNT sodium in pharmaceutical formulations. Statistical comparison of the results obtained by applying the proposed methods with those of the reference method revealed good agreement and proved that there was no significant difference in the accuracy and precision between the results. 


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. L. El-Ansary ◽  
N. S. Abdel-Kader ◽  
A. M. Asran

The ion-associate complexes of diaveridine were prepared in a solution and studied spectrophotometrically. The bulky counter anions such as sulfonphthalein acidic dyes, namely, bromocresol green (I), bromophenol blue (II), bromothymol blue (III), bromocresol purple (IV), bromocresol blue (V), o-cresol red (VI), p-cresol blue (VII), and m-cresol purple (VIII) were used for ion-associate complexes formation. The optimal characteristics for the color formation and the stoichiometry of the reaction were evaluated. Spectral characteristics and stability constants of the formed ion associates are discussed in terms of nature of donor and acceptor molecular structures. The molar absorptivities and association constants for the colored complexes were evaluated using the Benesi-Hildbrand equation. Conformity to Beer’s law enabled the assay of dosage form of the drug. The molar absorptivity, specific absorptivity, Sandell sensitivity, correlation coefficient, and detection and quantification limits were also calculated. The methods were validated in terms of accuracy, specificity, precision, and linearity. Also, spectrophotometric determination of the drug in pure and pharmaceutical preparations was tested.


2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Alaa Amin ◽  
Ibrahim Ahmed ◽  
Hassan Dessouki ◽  
Hassan Mohamed

AbstractSimple and rapid spectrophotometric methods have been developed for the microdetermination of fluoxetine HCl. The proposed methods are based on the formation of ion-pair complexes between fluoxetine and bromophenol blue (BPB), bromothymol blue (BTB), bromocresol green (BCG), and bromocresol purple (BCP) which can be measured at optimum λmax. Optimization of reaction conditions was investigated. Beerșs law was obeyed in the concentration ranges of 0.5–8.0 μg mL−1, whereas optimum concentration as adopted from the Ringbom plots was 0.7–7.7 μg mL−1. The molar absorptivity, Sandell sensitivity, and detection limit were also calculated. The most optimal and sensitive method was developed using BCG. The correlation coefficient was 0.9988 (n = 6) with a relative standard deviation of 1.25, for six determinations of 4.0 μg mL−1. The proposed methods were successfully applied to the determination of fluoxetine hydrochloride in its dosage forms and in biological fluids (spiked plasma sample) using the standard addition technique.


Sign in / Sign up

Export Citation Format

Share Document