Effect of using cassava as an amylopectin source in low protein diets on growth performance, nitrogen efficiency and postprandial changes in plasma glucose and related hormones concentrations of growing pigs

Author(s):  
Junyan Zhou ◽  
Lu Wang ◽  
Jianchuan Zhou ◽  
Xiangfang Zeng ◽  
Shiyan Qiao

Abstract This study was aimed to explore the effect of using cassava as an amylopectin source in low protein (LP) diets on growth performance, nitrogen efficiency and postprandial changes in plasma glucose and related hormones concentrations of growing pigs. Three animal experiments were included in the present study. Treatments included corn-soybean meal LP (Corn LP), corn-cassava-soybean meal LP (Corn + Cassava LP), and cassava-soybean meal LP (Cassava LP). The in vitro digestion proved that Corn + Cassava LP and Cassava LP diets induced more rapid starch digestion and glucose release, compared with Corn LP diet. The results of animal experiments are as follows: Cassava LP diet caused the most rapid changes in plasma glucose and relevant hormones concentrations after a meal. And it decreased the concentrations of fasting plasma insulin, glucagon, and leptin concentrations compared with other treatments (P < 0.05). These modulationes above led to a strong desire to eat and increased feed intake and then weight gain in growing pigs fed Cassava LP diet. Besides, feeding Cassava LP diet caused diarrhea, increased noxious gas release from feces, and increased concentrations of fecal isobutyrate and isovalerate (P < 0.05). Compared with Corn LP group, Corn + Cassava LP group showed significantly decreased urinary nitrogen (P < 0.05) and improved post-absorptive amino acid utilization efficiency. In conclusion, the use of cassava as an amylopectin source in LP diets could modulate glucose absorption and related gut secreted hormones secretion, subsequently strengthened the desire to eat, improved growth performance, and enhanced nitrogen efficiency in growing pigs.

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 232
Author(s):  
Yuxia Chen ◽  
Dan Shen ◽  
Lilan Zhang ◽  
Ruqing Zhong ◽  
Zhengqun Liu ◽  
...  

This study was carried out to evaluate the effect of the addition of the non-starch polysaccharide enzymes cocktail (NSPEC) on growth performance, nutrient digestibility and gas emissions in a corn-miscellaneous meal-based diet for finishing pigs. The NSPEC is a combination of cellulase, xylanase, β-glucanase, β-mannanase, α-galactosidase and pectinase optimized by assessing the in vitro dry matter digestibility (IVDMD) of corn-miscellaneous meal diet using an in vitro method of simulating digestion in the stomach and intestine of growing pigs. Growth performance and apparent total tract digestibility (ATTD) of nutrients and energy were measured. The gas concentration of ammonia, carbon dioxide, nitrous oxide and methane in the environmental assessment chambers were determined. The gas detecting period was divided into three frequencies of manure removal of every 1d, 2d and 3d. The addition of NSPEC into the corn-miscellaneous meal diet decreased feed conversation rate (FCR) and increased the ATTD of dry matter, crude protein, gross energy, neutral detergent fiber and acid detergent fiber of pigs (p < 0.05). The digestible energy was also improved (p < 0.05) significantly by NSPEC supplementation in the diet. Furthermore, the supplementation of the NSPEC reduced (p < 0.05) carbon dioxide concentration in the chambers. The ammonia emissions were significantly increased according to average 1d, 2d and 3d manure removal procedures (p < 0.01). These results indicated that the inclusion of optimal NSPEC in a corn-miscellaneous meal diet improved growth performance, nutrient digestibility and reduced carbon dioxide emissions on finishing pigs. The accumulated manure could increase the release of ammonia in a pig house.


2008 ◽  
Vol 33 (1) ◽  
pp. 7-12 ◽  
Author(s):  
J. L. Figueroa ◽  
M. Martínez ◽  
J. E. Trujillo ◽  
V. Zamora ◽  
J. L. Cordero ◽  
...  

Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1846
Author(s):  
Shunfen Zhang ◽  
Ruqing Zhong ◽  
Lixiang Gao ◽  
Zhengqun Liu ◽  
Liang Chen ◽  
...  

This study aimed to evaluate the effects of optimal carbohydrase mixture (OCM) on macronutrients and amino acid digestibility and the digestible energy (DE) in growing pigs fed the corn-soybean meal-based diet (CSM) and the wheat-soybean meal-based diet (WSM). A total of 36 ileal-cannulated pigs (50.9 ± 4.9 kg initial body weight) were allotted to four dietary treatments randomly, which included CSM and WSM diets, and two diets supplied with corresponding OCM. These OCMs were screened using an in vitro method from our previous study. After the five day adaptation period, fecal samples were collected from d six to seven, and ileal digesta samples were collected on d 8 and 10. Chromic oxide was added as an indigestible marker. The results show that the addition of OCM improved the apparent ileal digestibility (AID) of dry matter (DM), ash, carbohydrate (CHO), neutral detergent fiber, and gross energy (GE) and the apparent total tract digestibility (ATTD) of DM, CHO, and GE in CSM diet (p < 0.05), but reduced the apparent hindgut disappearance (AHD) of DM in CSM diet (p < 0.05). The ATTD of DM, crude protein (CP), ether extract (EE), ash, and GE and the AHD of DM, CP, EE, ash, CHO, and GE in WSM diet were improved by the OCM addition (p < 0.05), whereas the AID of DM, CP, ash, CHO, and GE were decreased (p < 0.05). The respective DE contents in CSM and WSM diets were increased from 15.45 to 15.74 MJ/kg and 15.03 to 15.49 MJ/kg under the effects of OCM (p < 0.05). Similar to the trend of AID of CP, the OCM addition increased the AID and standardized ileal digestibility (SID) of Ile, Thr, and Cys in CSM diet, but decreased the AID and SID of Ile, Phe, Thr, Val, Ala, Pro, Ser, and Tyr in WSM diet. In conclusion, the OCMs screened by an in vitro method could improve the total tract nutrient digestibility and DE for pigs fed corn-based diet or wheat-based diet but had inconsistent effects on the ileal digestibility of nutrients and energy.


Sign in / Sign up

Export Citation Format

Share Document