Enhanced-Efficacy Iranian Diatomaceous Earth for Controlling Two Stored-Product Insect Pests

Author(s):  
Najmeh Delgarm ◽  
Masumeh Ziaee ◽  
Alan McLaughlin

Abstract The present study was conducted to evaluate the insecticidal activity of three diatomaceous earth (DE) products, SilicoSec (Biofa GmbH, Munsingen, Germany), Protect-It (Hedley Technologies Inc., Canada), and Mamaghan. The silica aerogel was mixed to enhance the efficacy of Mamaghan DE with 10, 15, and 20% rates. The DE products were applied at treatment rates of 100, 200, and 400 ppm against adults of Tribolium confusum Jacquelin du Val. (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). In the second experiment, 0.1 and 0.5% deltamethrin was added to Mamaghan DE–10% silica aerogel to enhance the activity of the DE. Adult mortality was recorded 2, 5, 7, 10, and 14 d after exposure. Parental adults were removed after 14-d exposure time and progeny developed was evaluated after 65 d. Mamaghan–15 and 20% silica aerogel caused the highest mortality (>97%) against T. confusum after 10 d of exposure at the highest dose of 400 ppm which exceeded to 100% mortality after 14 d. However, the toxicity of Mamaghan DE against R. dominica was lower than that of the two commercial formulations at all dose rates. The presence of 0.1% deltamethrin increased the insecticidal activity of Mamaghan DE and significantly suppressed progeny production of both species. Even at the lowest dose of Mamaghan–10% + 0.1% deltamethrin, progeny production of both species was very low (four or less individuals per vial). However, no progeny was recorded in Mamaghan–10% + 0.5% deltamethrin. Thus, adding low rates of silica aerogel and deltamethrin considerably enhanced the efficacy of Mamaghan DE in controlling T. confusum and R. dominica.

2017 ◽  
Vol 37 (04) ◽  
pp. 243-258 ◽  
Author(s):  
Charles Adarkwah ◽  
Daniel Obeng-Ofori ◽  
Vanessa Hörmann ◽  
Christian Ulrichs ◽  
Matthias Schöller

Abstract Food losses caused by insects during postharvest storage are of paramount economic importance worldwide, especially in Africa. Laboratory bioassays were conducted in stored grains to determine the toxicity of powders of Eugenia aromatica and Moringa oleifera alone or combined with enhanced diatomaceous earth (Probe-A® DE, 89.0% SiO2 and 5% silica aerogel) to adult Sitophilus granarius, Tribolium castaneum and Acanthoscelides obtectus. Adult mortality was observed up to 7 days, while progeny production was recorded at 6–10 weeks. LD50 and LT50 values for adult test insects exposed to plant powders and DE, showed that A. obtectus was the most susceptible towards the botanicals (LD50 0.179% and 0.088% wt/wt for E. aromatica and M. oleifera, respectively), followed by S. granarius. Tribolium castaneum was most tolerant (LD50 1.42% wt/wt and 1.40% wt/wt for E. aromatica and M. oleifera, respectively). The combined mixture of plant powders and DE controlled the beetles faster compared to the plant powders alone. LT50 ranged from 55.7 h to 62.5 h for T. castaneum exposed to 1.0% M. oleifera and 1.0% DE, and 0.5% E. aromatica and 1.0% DE, respectively. Botanicals caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with DE as a grain protectant in an integrated pest management approach is discussed.


2014 ◽  
Vol 54 (1) ◽  
pp. 62-66 ◽  
Author(s):  
Yasaman Shafighi ◽  
Masumeh Ziaee ◽  
Yobert Ghosta

Abstract Laboratory bioassays were conducted to assess the insecticidal efficacy of the formulation SilicoSec® used alone or in combination with isolates of entomopathogenic fungi, Metarhizium anisopliae (Metschinkoff) Sorokin and Beauveria bassiana (Balsamo) Vuillemin. SilicoSec® is a commercial diatomaceous earth (DE) formulation. Wheat was treated with 200 mg/kg of DE, 400 mg/kg of each isolates alone or a combination of them, against Tribolium castaneum Herbst, Rhyzopertha dominica (F.), and Oryzaephilus surinamensis L. The experiments were carried out at 27±1°C and 65±5% relative humidity (RH) in continuous darkness. The pathogenicity of all isolates was significantly low even after 7 days of exposure, with the exception of R. dominica. The isolates were virulent to the beetles, but the efficacy of the isolates was enhanced in combination with the DE. Tribolium castaneum was the most resistant species, followed by R. dominica. The findings indicated that the addition of the DE to the isolates increased the pathogenicity especially at the highest exposure interval. The addition of DE may provide satisfactory control of the insect-pests of stored products.


2021 ◽  
Vol 58 (04) ◽  
pp. 1161-1167
Author(s):  
Khurram Mahmood Sultan Kamboh

The herein reported study was conducted to evaluate the parasitic potential of Anisopteromalus calandrae (Howard) against larvae of Callosobruchus maculatus (F.), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) while, adult pests on the food medium treated with two formulations of diatomaceous earth (DE); Marine (Celite) and fresh water (Perma Guard) as grain protectants. The DE was applied at three dose rates i.e., 200, 400 and 600 ppm, at 25°C temperature and 65% relative humidity. Mortality and emergence of adults of tested insects and parasitoid were observed after 14 and 28 days of exposure respectivly. The highest mortality of C. maculatus was 43.37% against higher dose of Perma Guard (600 ppm) while the maximum mortality of S. oryzae was recorded 39.56% on application of Celite (600 ppm). The maximum mortality of A. calandrae parasitoid was observed 66.86% in S. oryzae infested grains treated with higher dose of Perma Guard (600 ppm), while 63.81% mortality of parasitoid was observed in S. oryzae infested grains at higher dose of Celite DE (600 ppm). The Perma Guard effectively controls population of tested insect’s mortality than the Celite. The highest emergence of C maculatus observed was 62.44% at lower dose of 200 ppm of Perma Guard DE while the highest emergence recorded on application of Celite was 60.66% from C. maculatus. The highest emergence of A. calandrae was 65.65% from S. oryzae at lower dose of 200 ppm of Perma Guard DE while the highest emergence of parasitoid recorded on application of Celite was found 60.66% at lower dose of 200 ppm from C maculatus. The emergence of tested insects and parasitoid increased with the decrease in dose rate of DE in most of the tested combinations. Higher dose (600 ppm) of both DE (Celite and Perma Guard) used in experiment showed mortality of tested insects and parasitoid activity of Anisopteromalus calandrae and furthermore release of A. calandrae on host insects would be adversely affected by use of diatomaceous earth product on stored grains. The experiments were carried out in laboratory of Grain Research, Training and Storage Management cell, Department of Entomology, University of Agriculture Faisalabad.


2020 ◽  
Vol 36 (1) ◽  
pp. 113-117
Author(s):  
C.F. Nwanade

The insecticidal and residual effectiveness of Diatomaceous Earth (DE) (Nigeria-derived) and Spinosad® against Sitophilus zeamais on stored rice were evaluated under laboratory temperature (30 ± 2°C) and relative humidity (70 ± 5%). Adult mortality and progeny emergence were studied at three dose rates of DE and Spinosad® (0.1g/kg, 0.5g/kg, and 1g/kg). Spinosad® at 0.1-1.0 g/kg dose rates demonstrated significant results in mortality compared to DE and control groups at 14 d post-treatment and after the 2nd month of storage treatment. Spinosad® treated grains at the same dose rates also resulted in a significant reduction (P<0.05) in the emergence of progeny. Unlike DE, Spinosad® showed some insecticidal efficacy against S. zeamais on storage.


2011 ◽  
Vol 74 (8) ◽  
pp. 1288-1299 ◽  
Author(s):  
NICKOLAS G. KAVALLIERATOS ◽  
CHRISTOS G. ATHANASSIOU ◽  
ANN N. HATZIKONSTANTINOU ◽  
HELEN N. KAVALLIERATOU

Laboratory bioassays were conducted to assess pyrole chlorfenapyr as a potential grain protectant against adults of Rhyzopertha dominica, Sitophilus oryzae, Prostephanus truncatus, Tribolium confusum, and Liposcelis bostrychophila. Factors such as dose (0.01, 0.1, 0.5, 1, 5, and 10 ppm), exposure interval (7 and 14 days), temperature (20, 25, and 30°C), relative humidity (RH; 55 and 75%), and commodity (wheat, maize, barley, and paddy rice) were evaluated. Progeny production was assessed after 74 days of exposure. For L. bostrychophila and T. confusum the increase of dose increased mortality. After 7 or 14 days of exposure, mortality was low at doses of ≤1 ppm and did not exceed 23 or 36%, respectively, for L. bostrychophila or 13 or 58%, respectively, for T. confusum. After 14 days of exposure, mortality of S. oryzae at 30°C and 75% RH was 82.2%. Mortality of P. truncatus was considerably higher than that of the other species. At 0.5 ppm, mortality exceeded 81% after 7 days of exposure and 91% after 14 days of exposure. Progeny production of L. bostrychophila was extremely high. Very few progeny were found for T. confusum. For S. oryzae, offspring emergence was high, except at 20°C and 55% RH. For P. truncatus, progeny production in the treated maize was not avoided, even at 10 ppm. In the case of S. oryzae, at 0.1 ppm and after 14 days of exposure, mortality in wheat was higher than in the other three commodities. For R. dominica, mortality was low at 0.1 and 1 ppm for paddy rice but reached 74.4% in barley after 14 days of exposure. For T. confusum, mortality was low at 0.1 and 1 ppm in all commodities. For progeny production counts, for S. oryzae or R. dominica, adult emergence was higher in paddy rice than in the other three commodities. Finally, overall T. confusum progeny was low. Chlorfenapyr efficacy varied remarkably among the combinations tested, and it may be a viable grain protectant in combination with other insecticides.


1985 ◽  
Vol 25 (3) ◽  
pp. 683 ◽  
Author(s):  
PJ Collins

Resistance of field strains of Oryzaephilus surinamensis L. (sawtoothed grain beetle) to grain protectants was assessed using commercial dose rates of protectant in treated grain bioassays. Grain protectants tested were: chlorpyrifos- methyl, 5 and 10 mg/kg grain; methacriphos, 10 and 18 mg/kg; pirimiphos-methyl 4 mg/kg; fenitrothion, 12 mg/kg, plus carbaryl, 8 mg/kg; fenitrothion, 12 mg/kg, plus bioresmethrin, 1 mg/kg, plus piperonyl butoxide, 8 mg/ kg; pyrethrins, 3 mg/kg, plus piperonyl butoxide, 24 mg/kg. About 10% of farms surveyed and about 42% of merchant premises were infested. Most of the insects originating from farms were effectively controlled by all grain protectants. However, some strains showed less than 100% adult mortality and some progeny production when treated with: chloropyrifos-methyl at 5 mg/kg; pirimiphos-methyl; and pyrethrins plus piperonyl butoxide. In contrast, for all strains obtained from the premises of grain merchants, none of the grain protectants, except methacrifos at 18 mg/kg, caused complete adult mortality whilst fenitrothion, chlorpyrifos-methyl at 5 mg/kg and pyrethrins plus piperonyl butoxide failed to completely suppress progeny production in some strains. A composite strain showed no mortality with fenitrothion at 12 mg/kg after five generations of laboratory selection.


Sign in / Sign up

Export Citation Format

Share Document