scholarly journals Investigation of a critical choke during hydraulic-fracture flowback for a tight sandstone gas reservoir

2019 ◽  
Vol 16 (6) ◽  
pp. 1178-1190
Author(s):  
Jiachen Huang ◽  
Jinghong Hu ◽  
Wenting Zeng ◽  
Yuan Zhang

Abstract Low porosity and permeability in a tight sandstone gas reservoir can cause problems during fracturing. If the fracturing fluid cannot be discharged in a timely fashion after fracturing, the fracturing fluid will move into the deep formation and result in secondary damage. Conversely, if the flowback rate of the fracturing fluid is too high, it will cause the proppant to backflow and reduce the efficiency of fracturing operation. Therefore, it is very important to control the choke sizes and flowback rates for the flowback process of a tight sandstone reservoir. In this study, a model of the time of the closed fracture considering the principle of material balance is built. Subsequently, the relationship between the wellhead pressure and the optimum diameter of the choke at different times is obtained using hydrodynamics and particle dynamics theory. Finally, the proposed optimization method is applied to an actual well from the Xinjiang tight gas reservoirs. Results show that a choke diameter can be reasonably optimized under different wellhead pressures, and that fracturing fluid flows back as much as possible and without proppant backflow. A sound design of a fracturing fluid flowback system is also provided. This study presents the mechanism of post-fracturing management and provides a better understanding of the flowback system in tight gas reservoirs.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shengye Hao ◽  
Xinyu Qiu ◽  
Pengcheng Liu ◽  
Xiaoxia Chen

Splitting methods play a significant role in the coproduction of tight reservoirs which are characterized by vertical multilayer superimposition. It directly affects the accuracy of reservoir performance analysis and detailed descriptions. However, conventional splitting methods are limited to a few factors and static factors without considering the effect of layer parameter change. In this study, sensitivity analysis was carried out on five factors that affect the production splitting in coproduction wells. The research shows that in the production process, multiple parameters have a direct impact on the production of layers. Different parameters, which have to be included to split production, have different scale effects on layer production. Comparing the results of the KH method with the numerical simulation results, the limitation of the KH method for yield splitting is illustrated. A novel dynamic splitting method for production (DPSM) was proposed. This method is based on two primary methods, which are the multifactor static method for production splitting of gas (GPSM) and water (WPSM) and use the catastrophe theory and material balance equation (MBE) and obtain the final results by iterative method. The advantage of this method is that more accurate results in the production process are obtained by selecting eight factors, which contain 6 static factors and 2 dynamic factors, for research. It is more in line with the production practice that the ultimate results of production splitting vary with the production process. The accuracy and practicality of the results had been verified by numerical simulation. This method has practical significance for production splitting in tight gas reservoirs.


2000 ◽  
Author(s):  
Jacques Hagoort ◽  
Jaap Sinke ◽  
Barry Dros ◽  
Ferry Nieuwland

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yue Peng ◽  
Tao Li ◽  
Yuxue Zhang ◽  
Yongjie Han ◽  
Dan Wu ◽  
...  

Abstract Multifractured horizontal wells are widely used in the development of tight gas reservoirs to improve the gas production and the ultimate reservoir recovery. Based on the heterogeneity characteristics of the tight gas reservoir, the homogeneous scheme and four typical heterogeneous schemes were established to simulate the production of a multifractured horizontal well. The seepage characteristics and production performance of different schemes were compared and analyzed in detail by the analysis of streamline distribution, pressure distribution, and production data. In addition, the effects of reservoir permeability level, length of horizontal well, and fracture half-length on the gas reservoir recovery were discussed. Results show that the reservoir permeability of the unfractured areas, which are located at both ends of the multifractured horizontal well, determines the seepage ability of the reservoir matrix, showing a significant impact on the long-term gas production. High reservoir permeability level, long horizontal well length, and long fracture half-length can mitigate the negative influence of heterogeneity on the gas production. Our research can provide some guidance for the layout of multifractured horizontal wells and fracturing design in heterogeneous tight gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document