2. Determination of Absorbed-Dose Rates

2014 ◽  
Vol 71 ◽  
pp. 305-309 ◽  
Author(s):  
Patrícia L. Antonio ◽  
Teresa C.N.O. Pinto ◽  
Rogério M.V. Silva ◽  
Divanizia N. Souza ◽  
Linda V.E. Caldas

2005 ◽  
Vol 48 (spe2) ◽  
pp. 221-228 ◽  
Author(s):  
José Araújo dos Santos Júnior ◽  
Jorge João Ricardo Ferreira Cardoso ◽  
Cleomacio Miguel da Silva ◽  
Suêldo Vita Silveira ◽  
Romilton dos Santos Amaral

Potassium-40 was determined in soil in an area with 40,000 m² situated in the western State of Pernambuco, Brazil. For radiometric measurements, the gamma spectrometry method with a high purity germanium (HPGe) detector was used. Sampling of 78 soil samples has been performed at intervals of 25 m. The specific activities of 40K were calculated based on the photopeak of 1.46 MeV. Values from 541 to 3,572 Bq kg-1 were obtained (mean of 1,827 Bq kg-1). These values allowed the determination of the elemental concentrations as well as the absorbed dose rates in air, 1 m above the ground. The values varied from 1.7 to 11.5% (mean of 6%) and from 23.4 to 154.3 nGy h-1 (mean of 79 nGy h-1), respectively.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3012
Author(s):  
Se Kye Park ◽  
Dong Yun Choi ◽  
Duyoung Choi ◽  
Dong Yun Lee ◽  
Seung Hwa Yoo

In this study, a high-density polyethylene (HDPE)-based carbon fiber-reinforced thermoplastic (CFRTP) was irradiated by an electron-beam. To assess the absorbed dose rate influence on its mechanical properties, the beam energy and absorbed dose were fixed, while the absorbed dose rates were varied. The tensile strength (TS) and Young’s modulus (YM) were evaluated. The irradiated CFRTP TS increased at absorbed dose rates of up to 6.8 kGy/s and decreased at higher rates. YM showed no meaningful differences. For CFRTPs constituents, the carbon fiber (CF) TS gradually increased, while the HDPE TS decreased slightly as the absorbed dose rates increased. The OH intermolecular bond was strongly developed in irradiated CFRTP at low absorbed dose rates and gradually declined when increasing those rates. X-ray photoelectron spectroscopy analysis revealed that the oxygen content of irradiated CFRTPs decreased with increasing absorbed dose rate due to the shorter irradiation time at higher dose rates. In conclusion, from the TS viewpoint, opposite effects occurred when increasing the absorbed dose rate: a favorable increase in CF TS and adverse decline of attractive hydrogen bonding interactions between HDPE and CF for CFRTPs TS. Therefore, the irradiated CFRTP TS was maximized at an optimum absorbed dose rate of 6.8 kGy/s.


1980 ◽  
Vol 175 (1) ◽  
pp. 17-18 ◽  
Author(s):  
William L. McLaughlin ◽  
Arne Miller ◽  
Stuart C. Ellis ◽  
Arthur C. Lucas ◽  
Barbara M. Kapsar

2014 ◽  
Vol 12 (7) ◽  
pp. 774-781 ◽  
Author(s):  
Ioan Călinescu ◽  
Diana Martin ◽  
Daniel Ighigeanu ◽  
Adina Gavrila ◽  
Adrian Trifan ◽  
...  

AbstractElectron beam (EB) irradiation is a useful method to generate stable silver nanoparticles without the interference of inherent impurities generated from chemical reactions. Our experiments were carried out using linear electron beam accelerators with two different EB absorbed dose rates: 2 kGy min−1 and 7–8 kGy s−1, and with different absorbed dose levels. The optimum conditions for silver nanoparticles (AgNPs) generation by radiolysis, or by radiolysis combined with chemical reduction, were established. In order to obtain a good yield for AgNPs synthesized by radiolysis, a high dose rate is required, resulting in a rapid production process. At low absorbed dose rates, the utilization of a stabilization agent is advisable. By modifying the experimental conditions, the ratio between the chemical and radiolytic reduction process can be adjusted, thus it is possible to obtain nanoparticles with tailored characteristics, depending on the desired application.


2012 ◽  
Vol 293 (2) ◽  
pp. 649-654 ◽  
Author(s):  
K. S. Babai ◽  
S. Poongothai ◽  
K. S. Lakshmi ◽  
J. Punniyakotti ◽  
V. Meenakshisundaram

1983 ◽  
Vol 4 (3-4) ◽  
pp. 189-190
Author(s):  
M. Petel ◽  
J.P. Massué ◽  
H. Francois ◽  
J. Tripier

Sign in / Sign up

Export Citation Format

Share Document