scholarly journals Molecular Detection of Spotted Fever Group Rickettsiae (Rickettsiales: Rickettsiaceae) in Dermacentor variabilis (Acari: Ixodidae) Collected Along the Platte River in South Central Nebraska

2019 ◽  
Vol 57 (2) ◽  
pp. 519-523
Author(s):  
Brandon E Luedtke ◽  
Julie J Shaffer ◽  
Estrella Monrroy ◽  
Corey W Willicott ◽  
Travis J Bourret

Abstract Dermacentor variabilis is the predominant tick species in Nebraska and is presumed to be the primary vector of Rickettsia rickettsii associated with cases of Rocky Mountain spotted fever (RMSF). Interestingly, RMSF cases in Nebraska have increased on a year-to-year basis, yet the prevalence of R. rickettsii in D. variabilis ticks has not been established for Nebraska. Here we sought to set a baseline for the prevalence of R. rickettsii and other spotted fever group (SFG) rickettsiae harbored by D. variabilis ticks. Over a 3-yr period, D. variabilis were collected along the Platte River in south central Nebraska. Individual tick DNA was analyzed using endpoint PCR to identify ticks carrying SFG rickettsiae. In total, 927 D. variabilis were analyzed by PCR and 38 (4.1%) ticks tested positive for SFG rickettsiae. Presumptive positives were sequenced to identify the Rickettsia species, of which 29 (76%) were R. montanensis, 5 (13%) were R. amblyommatis, 4 (11%) were R. bellii, and R. rickettsii was not detected. These data indicate that R. rickettsii is likely at a low prevalence in south central Nebraska and spillover of R. amblyommatis into D. variabilis is likely occurring due to the invasive lone star tick (Amblyomma americanum). In addition, our data suggest that R. montanensis and R. amblyommatis could be associated with the increase in SFG rickettsiae infections in Nebraska. This information will be of value to clinicians and the general public for evaluating diagnosis of disease- and risk-associated environmental exposure, respectively.

1985 ◽  
Vol 31 (12) ◽  
pp. 1131-1135 ◽  
Author(s):  
Louis A. Magnarelli ◽  
John F. Anderson ◽  
Willy Burgdorfer ◽  
Robert N. Philip ◽  
W. Adrian Chappell

Immature and adult ixodid ticks were collected during 1983 and 1984 in Newtown, Connecticut, an area endemic for Rocky Mountain spotted fever (RMSF), to determine prevalence of infection by spotted fever group (SFG) rickettsiae. Direct fluorescent-antibody (FA) staining revealed SFG organisms in 6 (1.8%) of 332 Dermacentor variabilis larvae, 5 (7.8%) of 64 D. variabilis nymphs, and in 2 (40%) of 5 Ixodes cookei nymphs removed from small- and medium-sized mammals. Hemolymph tests detected rickettsia-like organisms in 15 (8.8%) of 170 D. variabilis adults; 8 specimens retested by direct FA were negative. In contrast, hemocytes from 5 (8.6%) of 58 Ixodes texanus females contained organisms that stained positively in both hemolymph and direct FA tests. An indirect microimmunofluorescence test identified specific antibodies to Rickettsia rickettsii, the etiologic agent of RMSF, in serum samples from a chipmunk, raccoons, and white-footed mice. Results indicate that immature or adult ticks of at least three species may be involved in the maintenance and transmission of SFG rickettsiae at Newtown.


2016 ◽  
Vol 199 (6) ◽  
Author(s):  
Nicholas F. Noriea ◽  
Tina R. Clark ◽  
David Mead ◽  
Ted Hackstadt

ABSTRACT Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments. The 120- and 32-kDa fragments remain noncovalently associated on the surface of the bacterium, with implications that the 32-kDa fragment functions as the membrane anchor domain. Here we present evidence for a similar posttranslational processing of rOmpA. rOmpA is expressed as a predicted 224-kDa precursor yet is observed on SDS-PAGE as a 190-kDa protein. A small rOmpA fragment of ∼32 kDa was discovered during surface proteome analysis and identified as the carboxy-terminal end of the protein. A rabbit polyclonal antibody was generated to the autotransporter region of rOmpA and confirmed a 32-kDa fragment corresponding to the calculated mass of a proteolytically cleaved rOmpA autotransporter region. N-terminal amino acid sequencing revealed a cleavage site on the carboxy-terminal side of Ser-1958 in rOmpA. An avirulent strain of R. rickettsii Iowa deficient in rOmpB processing was also defective in the processing of rOmpA. The similarities of the cleavage sites and the failure of R. rickettsii Iowa to process either rOmpA or rOmpB suggest that a single enzyme may be responsible for both processing events. IMPORTANCE Members of the spotted fever group of rickettsiae, including R. rickettsii, the etiologic agent of Rocky Mountain spotted fever, express at least four autotransporter proteins that are protective antigens or putative virulence determinants. One member of this class of proteins, rOmpB, is proteolytically processed to a passenger domain and an autotransporter domain that remain associated on the rickettsial outer membrane. The protease responsible for this posttranslation processing remains unknown. Here we show that another autotransporter, rOmpA, is similarly processed by R. rickettsii. Similarities in sequence at the cleavage site and predicted secondary protein structure suggest that all four R. rickettsii autotransporters may be processed by the same outer membrane protease.


2010 ◽  
Vol 78 (5) ◽  
pp. 2240-2247 ◽  
Author(s):  
Betsy Kleba ◽  
Tina R. Clark ◽  
Erika I. Lutter ◽  
Damon W. Ellison ◽  
Ted Hackstadt

ABSTRACT Rickettsii rickettsii, the etiologic agent of Rocky Mountain spotted fever, replicates within the cytosol of infected cells and uses actin-based motility to spread inter- and intracellularly. Although the ultrastructure of the actin tail and host proteins associated with it are distinct from those of Listeria or Shigella, comparatively little is known regarding the rickettsial proteins involved in its organization. Here, we have used random transposon mutagenesis of R. rickettsii to generate a small-plaque mutant that is defective in actin-based motility and does not spread directly from cell to cell as is characteristic of spotted fever group rickettsiae. The transposon insertion site of this mutant strain was within Sca2, a member of a family of large autotransporter proteins. Sca2 exhibits several features suggestive of its apparent role in actin-based motility. It displays an N-terminal secretory signal peptide, a C-terminal predicted autotransporter domain, up to four predicted Wasp homology 2 (WH2) domains, and two proline-rich domains, one with similarity to eukaryotic formins. In a guinea pig model of infection, the Sca2 mutant did not elicit fever, suggesting that Sca2 and actin-based motility are virulence factors of spotted fever group rickettsiae.


2020 ◽  
Vol 57 (3) ◽  
pp. 974-978 ◽  
Author(s):  
Andrea Egizi ◽  
Sydney Gable ◽  
Robert A Jordan

Abstract Tick-borne rickettsiae are undergoing epidemiological changes in the eastern United States while human encounters with lone star ticks (Amblyomma americanum L.) have increased substantially. We used real-time polymerase chain reaction assays to test for three species of spotted fever group rickettsiae (SFGR) (Rickettsiales: Rickettsiaceae) in 1,858 nymphal A. americanum collected from Monmouth County, New Jersey, a coastal county with endemic Lyme disease and established tick surveillance. Out of the 1,858 tested, 465 (25.0%) were infected with Rickettsia amblyommatis Karpathy, a species of undetermined pathogenicity found frequently in A. americanum, while 1/1,858 (0.05%) contained Rickettsia rickettsii Brumpt, the agent of Rocky Mountain spotted fever. No ticks tested positive for mildly pathogenic Rickettsia parkeri Lackman, and no ticks were co-infected with multiple Rickettsia spp. Our results indicate that A. americanum could be involved in transmission of R. rickettsii to humans in New Jersey, albeit rarely. The much higher rates of R. amblyommatis infection are consistent with hypotheses that human sera reacting to this species could contribute to reports of mild SFGR cases.


Author(s):  
Tom Fletcher ◽  
Nick Beeching

Rickettsial infections are caused by a variety of obligate intracellular, Gram-negative bacteria from the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. Rickettsia is further subdivided into the spotted fever group and the typhus group. Bartonella and Coxiella burnetii bacteria are similar to rickettsiae and cause similar diseases. The range of recognized spotted fever group infections is rapidly expanding, complementing long-recognized examples such as Rocky Mountain spotted fever (Rickettsia rickettsii) in the US, and Australian tick typhus (Rickettsia australis), as well as those in southern Europe and Africa. Animals are the predominant reservoir of infection, and transmission to people is usually through ticks, mites, fleas, or lice, during blood-feeding or from scarification of faeces deposited on the skin. This chapter focuses on the two of the most relevant infections encountered in UK practice: African tick typhus, and Q fever.


Praxis ◽  
2005 ◽  
Vol 94 (47) ◽  
pp. 1869-1870
Author(s):  
Balestra ◽  
Nüesch

Eine 37-jährige Patientin stellt sich nach der Rückkehr von einer Rundreise durch Nordamerika mit einem Status febrilis seit zehn Tagen und einem makulösem extremitätenbetontem Exanthem seit einem Tag vor. Bei suggestiver Klinik und Besuch der Rocky Mountains wird ein Rocky Mountain spotted fever diagnostiziert. Die Serologie für Rickettsia conorii, die mit Rickettsia rickettsii kreuzreagiert, war positiv und bestätigte die klinische Diagnose. Allerdings konnte der beweisende vierfache Titeranstieg, möglicherweise wegen spät abgenommener ersten Serologie, nicht nachgewiesen werden. Nach zweiwöchiger antibiotischer Therapie mit Doxycycline waren Status febrilis und Exanthem regredient.


Author(s):  
Kathryn T Duncan ◽  
Meriam N Saleh ◽  
Kellee D Sundstrom ◽  
Susan E Little

Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 228
Author(s):  
M. Nathan Kristof ◽  
Paige E. Allen ◽  
Lane D. Yutzy ◽  
Brandon Thibodaux ◽  
Christopher D. Paddock ◽  
...  

Rickettsia are significant sources of tick-borne diseases in humans worldwide. In North America, two species in the spotted fever group of Rickettsia have been conclusively associated with disease of humans: Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, and Rickettsia parkeri, the cause of R. parkeri rickettsiosis. Previous work in our lab demonstrated non-endothelial parasitism by another pathogenic SFG Rickettsia species, Rickettsia conorii, within THP-1-derived macrophages, and we have hypothesized that this growth characteristic may be an underappreciated aspect of rickettsial pathogenesis in mammalian hosts. In this work, we demonstrated that multiple other recognized human pathogenic species of Rickettsia, including R. rickettsii, R. parkeri, Rickettsia africae, and Rickettsiaakari can grow within target endothelial cells as well as within PMA-differentiated THP-1 cells. In contrast, Rickettsia bellii, a Rickettsia species not associated with disease of humans, and R. rickettsii strain Iowa, an avirulent derivative of pathogenic R. rickettsii, could invade both cell types but proliferate only within endothelial cells. Further analysis revealed that similar to previous studies on R. conorii, other recognized pathogenic Rickettsia species could grow within the cytosol of THP-1-derived macrophages and avoided localization with two different markers of lysosomal compartments; LAMP-2 and cathepsin D. R. bellii, on the other hand, demonstrated significant co-localization with lysosomal compartments. Collectively, these findings suggest that the ability of pathogenic rickettsial species to establish a niche within macrophage-like cells could be an important factor in their ability to cause disease in mammals. These findings also suggest that analysis of growth within mammalian phagocytic cells may be useful to predict the pathogenic potential of newly isolated and identified Rickettsia species.


Sign in / Sign up

Export Citation Format

Share Document