obligate intracellular
Recently Published Documents


TOTAL DOCUMENTS

545
(FIVE YEARS 169)

H-INDEX

60
(FIVE YEARS 5)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Hala Tamim El Jarkass ◽  
Calvin Mok ◽  
Michael R Schertzberg ◽  
Andrew G Fraser ◽  
Emily R Troemel ◽  
...  

Microsporidia are ubiquitous obligate intracellular pathogens of animals. These parasites often infect hosts through an oral route, but little is known about the function of host intestinal proteins that facilitate microsporidia invasion. To identify such factors necessary for infection by Nematocida parisii, a natural microsporidian pathogen of Caenorhabditis elegans, we performed a forward genetic screen to identify mutant animals that have a Fitness Advantage with Nematocida (Fawn). We isolated four fawn mutants that are resistant to Nematocida infection and contain mutations in T14E8.4, which we renamed aaim-1 (Antibacterial and Aids invasion by Microsporidia). Expression of AAIM-1 in the intestine of aaim-1 animals restores N. parisii infectivity and this rescue of infectivity is dependent upon AAIM-1 secretion. N. parisii spores in aaim-1 animals are improperly oriented in the intestinal lumen, leading to reduced levels of parasite invasion. Conversely, aaim-1 mutants display both increased colonization and susceptibility to the bacterial pathogen Pseudomonas aeruginosa and overexpression of AAIM-1 reduces P. aeruginosa colonization. Competitive fitness assays show that aaim-1 mutants are favoured in the presence of N. parisii but disadvantaged on P. aeruginosa compared to wild type animals. Together, this work demonstrates how microsporidia exploits a secreted protein to promote host invasion. Our results also suggest evolutionary trade-offs may exist to optimizing host defense against multiple classes of pathogens.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 36
Author(s):  
Anita Bogdanov ◽  
László Janovák ◽  
Jasmina Vraneš ◽  
Tomislav Meštrović ◽  
Sunčanica Ljubin-Sternak ◽  
...  

Chlamydia trachomatis (C. trachomatis) is an obligate intracellular bacterium linked to ocular and urogenital infections with potentially serious sequelae, including blindness and infertility. First-line antibiotics, such as azithromycin (AZT) and doxycycline, are effective, but treatment failures have also been reported. Encapsulation of antibiotics in liposomes is considered an effective approach for improving their local effects, bioavailability, biocompatibility and antimicrobial activity. To test whether liposomes could enhance the antichlamydial action of AZT, we encapsulated AZT in different surface-charged elastic liposomes (neutral, cationic and anionic elastic liposomes) and assessed their antibacterial potential against the C. trachomatis serovar D laboratory strain as well as the clinical isolate C. trachomatis serovar F. A direct quantitative polymerase chain reaction (qPCR) method was used to measure chlamydial genome content 48 h post infection and to determine the recoverable chlamydial growth. All the liposomes efficiently delivered AZT to HeLa 229 cells infected with the laboratory Chlamydia strain, exhibiting the minimal inhibitory concentrations (MIC) and the minimal bactericidal concentrations (MBC) of AZT even 4–8-fold lower than those achieved with the free AZT. The tested AZT-liposomes were also effective against the clinical Chlamydia strain by decreasing MIC values by 2-fold relative to the free AZT. Interestingly, the neutral AZT-liposomes had no effect on the MBC against the clinical strain, while cationic and anionic AZT-liposomes decreased the MBC 2-fold, hence proving the potential of the surface-charged elastic liposomes to improve the effectiveness of AZT against C. trachomatis.


2021 ◽  
Author(s):  
Jennah E. Dharamshi ◽  
Natalia Gaarslev ◽  
Karin Steffen ◽  
Tom Martin ◽  
Detmer Sipkema ◽  
...  

Sponge microbiomes contribute to host health, nutrition, and defense through the production of secondary metabolites. Chlamydiae, a phylum of obligate intracellular bacteria ranging from animal pathogens to endosymbionts of microbial eukaryotes, are frequently found associated with sponges. However, sponge-associated chlamydial diversity has not yet been investigated at the genomic level and host-interactions remain thus far unexplored. Here, we sequenced the microbiomes of three sponge species and found high, though variable, Chlamydiae relative abundances of up to 21.2% of bacterial diversity. Using genome-resolved metagenomics 18 high-quality sponge-associated chlamydial genomes were reconstructed, covering four chlamydial families. Among these, Sorochlamydiaceae shares a common ancestor with Chlamydiaceae animal pathogens, suggesting long-term co-evolution with animals. Sponge-associated chlamydiae genomes mostly resembled environmental chlamydial endosymbionts, but not pathogens, and encoded genes for degrading diverse compounds associated with sponges, such as taurine. Unexpectedly, we identified widespread genetic potential for secondary metabolite biosynthesis across Chlamydiae, which may represent an explored reservoir of novel natural products. This finding suggests that chlamydiae may partake in defensive symbioses and that secondary metabolites play a wider role in mediating intracellular interactions. Furthermore, sponge-associated chlamydiae relatives were found in other marine invertebrates, pointing towards wider impacts of this phylum on marine ecosystems.


2021 ◽  
Vol 8 ◽  
Author(s):  
Carolina Mesa-Pineda ◽  
Jeffer L. Navarro-Ruíz ◽  
Sara López-Osorio ◽  
Jenny J. Chaparro-Gutiérrez ◽  
Luis M. Gómez-Osorio

The poultry industry is one of the main providers of protein for the world's population, but it faces great challenges including coccidiosis, one of the diseases with the most impact on productive performance. Coccidiosis is caused by protozoan parasites of the genus Eimeria, which are a group of monoxenous obligate intracellular parasites. Seven species of this genus can affect chickens (Gallus gallus), each with different pathogenic characteristics and targeting a specific intestinal location. Eimeria alters the function of the intestinal tract, generating deficiencies in the absorption of nutrients and lowering productive performance, leading to economic losses. The objective of this manuscript is to review basic concepts of coccidiosis, the different Eimeria species that infect chickens, their life cycle, and the most sustainable and holistic methods available to control the disease.


2021 ◽  
Vol 19 (suplemento) ◽  
Author(s):  
L Bravo Araya

Anaplasma platys is a Gram-negative, intracellular obligate bacterium that is transmitted by Rhipicephalus sanguineus ticks and has been identified in most of the country. It is the causative agent of canine infectious cyclic thrombocytopenia. The objective of this work is to report the finding of morulae compatible with A. platys in the blood smear of a 10-year-old male Weimaraner canine who was treated at the Hospital de Salud Animal of the Facultad de Ciencias Veterinarias of the Universidad Nacional del Litoral, in the city of Esperanza. The case could not be followed up, because the patient died a few days after his first consultation. The detection of obligate intracellular pathogens in blood smears has low sensitivity and specificity, therefore confirmation of the causative agent must be performed using PCR. Due to the severity of the condition presented in this case, it is necessary to differentiate the presence of Ehrliquia canis and confirm the finding of A. platys using PCR. Current scientific evidence reveals that the zoonotic potential of A. platys is very low or nil.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Mathilda Whittle ◽  
Antoine M. G. Barreaux ◽  
Michael B. Bonsall ◽  
Fleur Ponton ◽  
Sinead English

Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host–symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.


2021 ◽  
Vol 118 (48) ◽  
pp. e2114442118
Author(s):  
Kazuhide Yahata ◽  
Melissa N. Hart ◽  
Heledd Davies ◽  
Masahito Asada ◽  
Samuel C. Wassmer ◽  
...  

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Marloes Heijne ◽  
Jeanet van der Goot ◽  
Herma Buys ◽  
Annemieke Dinkla ◽  
Hendrik Jan Roest ◽  
...  

AbstractChlamydia psittaci was considered the predominant chlamydial species in poultry until Chlamydia gallinacea was discovered in 2009. C. psittaci is a zoonotic obligate intracellular bacterium reported in more than 465 bird species including poultry. In poultry, infections can result in asymptomatic disease, but also in more severe systemic illness. The zoonotic potential of C. gallinacea has yet to be proven. Infections in poultry appear to be asymptomatic and in recent prevalence studies C. gallinacea was the main chlamydial species found in chickens. The high prevalence of C. gallinacea resulted in the question if an infection with C. gallinacea might protect against an infection with C. psittaci. To investigate possible cross protection, chickens were inoculated with C. gallinacea NL_G47 and subsequently inoculated with either a different strain of C. gallinacea (NL_F725) or C. psittaci. Chickens that had not been pre-inoculated with C. gallinacea NL_G47 were used as a C. gallinacea or C. psittaci infection control. In the groups that were inoculated with C. psittaci, no difference in pharyngeal or cloacal shedding, or in tissue dissemination was observed between the control group and the pre-inoculated group. In the groups inoculated with C. gallinacea NL_F725, shedding in cloacal swabs and tissues dissemination was lower in the group pre-inoculated with C. gallinacea NL_G47. These results indicate previous exposure to C. gallinacea does not protect against an infection with C. psittaci, but might protect against a new infection of C. gallinacea.


2021 ◽  
Author(s):  
Sarah R Bordenstein ◽  
Seth Bordenstein

Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia's mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic divergence and genomic rearrangement of the bacterial chromosome, and uniquely encodes a Eukaryotic Association Module with eukaryotic-like genes and an ensemble of putative host interaction genes. Despite WO's relevance to genome evolution, selfish genetics, and symbiotic applications, relatively little is known about its origin, host range, diversification, and taxonomic classification. Here we analyze the most comprehensive set of 150 Wolbachia and phage WO assemblies to provide a framework for discretely organizing and naming integrated phage WO genomes. We demonstrate that WO is principally in arthropod Wolbachia with relatives in diverse endosymbionts and metagenomes, organized into four variants related by gene synteny, often oriented opposite the origin of replication in the Wolbachia chromosome, and the large serine recombinase is an ideal typing tool to assign taxonomic classification of the four variants. We identify a novel, putative lytic cassette and WO's association with a conserved eleven gene island, termed Undecim Cluster, that is enriched with virulence-like genes. Finally, we evaluate WO-like Islands in the Wolbachia genome and discuss a new model in which Octomom, a notable WO-like Island, arose from a split with WO. Together, these findings establish the first comprehensive Linnaean taxonomic classification of endosymbiont phages that includes distinguishable genera of phage WO, a family of non-Wolbachia phages from aquatic environments, and an order that captures the collective relatedness of these viruses.


2021 ◽  
Author(s):  
Matthew D. Romero ◽  
Rey A. Carabeo

The obligate intracellular pathogen  Chlamydia trachomatis manipulates the host actin cytoskeleton to assemble actin-rich structures that drive pathogen entry. This actin remodeling event exhibits relatively rapid dynamics that, through quantitative live-cell imaging, was revealed to consist of three phases – a fast recruitment phase which abruptly transitions to a fast turnover phase before resolving into a slow turnover of actin, indicating the end of actin remodeling. Here, we investigate Chlamydia invasion in the context of actin dynamics. Efficient invasion was associated with robust actin remodeling kinetics, which was linked to signaling from the type-III secreted effectors TarP and TmeA, and the actin nucleating activities of formin 1 (Fmn1) and Arp2/3. Stable recruitment of Fmn1 and Arp2/3 was dependent upon TarP and/or TmeA, although TarP signaling was responsible for the majority of Fmn1 and Arp2/3 recruitment. Rapid actin kinetics were due in part to a collaborative functional interaction between two different classes of actin nucleators – formins, including formin 1 and the diaphanous-related formins mDia1 and mDia2, and the Arp2/3 complex. Inhibition of either formin or Arp2/3, or deletion of TarP and TmeA, prevented this collaboration and resulted in attenuated actin kinetics and invasion efficiency. Collectively, these data support a model wherein TarP and TmeA signaling are core components of actin remodeling that operate via stable recruitment of formin and Arp2/3. At the population level, the kinetics of recruitment and turnover of actin and its nucleators were linked. However, reanalysis of the data at the level of individual elementary bodies showed significant variation and a lack of correlation between the kinetics of recruitment and turnover, suggesting that accessory factors variably modify actin kinetics at individual entry sites. In summary, efficient chlamydial invasion is an effector-driven process that requires a specific profile of actin recruitment which arises following collaboration between formin and Arp2/3.


Sign in / Sign up

Export Citation Format

Share Document