scholarly journals How the Distance Between Drag-Cloth Checks Affects the Estimate of Adult and Nymphal Ixodes scapularis (Acari: Ixodidae) Density

2019 ◽  
Vol 57 (2) ◽  
pp. 623-626 ◽  
Author(s):  
Ben Borgmann-Winter ◽  
David Allen

Abstract Drag-cloth sampling is the most commonly used method to sample for ticks. A cloth is dragged along the ground and checked for ticks at regular intervals to count ticks before they drop off. The distance between drag-cloth checks differs between studies, which could result in lower density estimates for studies with greater distances between checks. Here, we measured this effect by 1) calculating the rate at which nymphal and adult Ixodes scapularis Say ticks drop off the cloth per meter dragged and 2) measuring tick density by drag-cloth sampling with three different drag-cloth check interval distances. We found a higher drop-off rate for adult ticks, 0.083/m, than nymphal ticks, 0.047/m. The estimated density of ticks decreased with increasing check interval distance. Our results not only highlight the importance of accounting for check interval distance when estimating tick density, but also provide the first estimate of nymphal I. scapularis drop-off rate.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Benoit Talbot ◽  
Andreea Slatculescu ◽  
Charles R. Thickstun ◽  
Jules K. Koffi ◽  
Patrick A. Leighton ◽  
...  

Abstract In eastern North America, including Canada, Lyme disease is caused by Borrelia burgdorferi sensu stricto and transmitted to humans by the blacklegged tick, Ixodes scapularis. The last decade has seen a growing incidence of Lyme disease in Canada, following the northward range expansion of I. scapularis tick populations from endemic areas in eastern United States. This may be attributable to movement of the many hosts that they parasitize, including songbirds, deer and small mammals. In this study, we wanted to test the effect of spatial, temporal and ecological variables, on blacklegged tick density and infection rates, near the northern limit of their distribution in Ontario and Quebec, Canada. We found an effect of both proportion of forested areas and distance to roads, on density of I. scapularis ticks and prevalence of infection by B. burgdorferi. We also found an effect of both sampling year and ordinal sampling data on prevalence of infection by B. burgdorferi. In six adjacent sites showing evidence of reproducing I. scapularis populations, we found that forest composition and structure influenced density of I. scapularis ticks. Our results suggest that blacklegged tick density and infection rate in Canada may be influenced by a variety of factors.


2021 ◽  
Author(s):  
Erin Hassett ◽  
Maria Diuk-Wasser ◽  
Laura Harrington ◽  
Maria del Pilar Fernandez

Abstract Background Public green spaces are important for human health, but they may expose visitors to ticks and tick-borne pathogens. We sought to understand risk and drivers of tick-preventative behavior in three popular parks on Staten Island, NY, USA by integrating tick hazard and park visitors’ behaviors. Methods From 20 May to 19 August 2019, ticks were collected via drag cloth sampling in multiple parks, sites, and habitats to estimate tick density. Human behavior was assessed by observing usage (time spent and activity type) in each site and habitat. To evaluate risk of tick exposure, we compared park usage by demographics across sites and compared individual exposure time per site and habitat. To assess visitors’ tick prevention behaviors, a knowledge, attitude, and practices (KAP) survey was administered. Results Three tick species (Ixodes scapularis, Amblyomma americanum and Haemaphysalis longicornis) were collected. The density of nymphs was heterogenous across parks, with the greatest density in unmaintained herbaceous habitats and trails. The fewest people entered the highest tick risk park and within-park locations. The KAP survey revealed that most respondents (N= 190) could not identify a nymphal stage tick when shown examples of various arthropods. Interviewees identified parks as the main location for tick exposure, but most believed they themselves had minimal risk for tick encounter. Consequently, many visitors did not conduct tick checks. People were most likely to practice tick checks if they knew multiple prevention methods and perceived a high likelihood of tick encounter. Conclusions By integrating acarological indices and park visitor behaviors we found a mismatch between the areas with higher tick densities and areas more frequently used by park visitors. However, this exposure risk varied among demographic groups and the type of activities. Moreover, the use of preventative measures was associated with the perceived probability of tick encounter and knowledge of tick habitat, which would modify the ultimate risk of tick encounter and disease given exposure. Our research is a first step towards identifying visitor risk, attitudes, and practices that could be targeted by optimized messaging strategies for tick bite prevention among park visitors.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark P. Nelder ◽  
Curtis B. Russell ◽  
Antonia Dibernardo ◽  
Katie M. Clow ◽  
Steven Johnson ◽  
...  

Abstract Background The universal nature of the human–companion animal relationship and their shared ticks and tick-borne pathogens offers an opportunity for improving public and veterinary health surveillance. With this in mind, we describe the spatiotemporal trends for blacklegged tick (Ixodes scapularis) submissions from humans and companion animals in Ontario, along with pathogen prevalence. Methods We tested tick samples submitted through passive surveillance (2011–2017) from humans and companion animals for Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum and Babesia microti. We describe pathogen prevalence in ticks from humans and from companion animals and constructed univariable Poisson and negative binomial regression models to explore the spatiotemporal relationship between the rates of tick submissions by host type. Results During the study, there were 17,230 blacklegged tick samples submitted from humans and 4375 from companion animals. Tick submission rates from companion animals were higher than expected in several public health units (PHUs) lacking established tick populations, potentially indicating newly emerging populations. Pathogen prevalence in ticks was higher in PHUs where established blacklegged tick populations exist. Borrelia burgdorferi prevalence was higher in ticks collected from humans (maximum likelihood estimate, MLE = 17.5%; 95% confidence interval, CI 16.97–18.09%) than from companion animals (9.9%, 95% CI 9.15–10.78%). There was no difference in pathogen prevalence in ticks by host type for the remaining pathogens, which were found in less than 1% of tested ticks. The most common co-infection B. burgdorferi + B. miyamotoi occurred in 0.11% of blacklegged ticks from humans and animals combined. Borrelia burgdorferi prevalence was higher in unengorged (21.9%, 95% CI 21.12–22.65%) than engorged ticks (10.0%, 95% CI 9.45–10.56%). There were no consistent and significant spatiotemporal relationships detected via regression models between the annual rates of submission of each host type. Conclusions While B. burgdorferi has been present in blacklegged ticks in Ontario for several decades, other tick-borne pathogens are also present at low prevalence. Blacklegged tick and pathogen surveillance data can be used to monitor risk in human and companion animal populations, and efforts are under consideration to unite surveillance efforts for the different target populations. Graphic Abstract


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
F. Keesing ◽  
D. J. McHenry ◽  
M. H. Hersh ◽  
R. S. Ostfeld

AbstractBorrelia miyamotoi, a bacterium that causes relapsing fever, is found in ixodid ticks throughout the northern hemisphere. The first cases of human infection with B. miyamotoi were identified in 2011. In the eastern USA, blacklegged ticks (Ixodes scapularis) become infected by feeding on an infected vertebrate host, or through transovarial transmission. We surveyed B. miyamotoi prevalence in ticks within forested habitats in Dutchess County, New York, and identified possible reservoir hosts. To assess spatial variation in infection, we collected questing nymphal ticks at > 150 sites. To assess temporal variation in infection, we collected questing nymphs for 8 years at a single study site. We collected questing larval ticks from nine plots to estimate the amount of transovarial transmission. To evaluate potential reservoir hosts, we captured 14 species of mammal and bird hosts naturally infested with larval blacklegged ticks and held these hosts in the laboratory until ticks fed to repletion and molted to nymphs. We determined infection for all ticks using quantitative polymerase chain reaction. The overall infection prevalence of questing nymphal ticks across all sites was ~ 1%, but prevalence at individual sites was as high as 9.1%. We detected no significant increase in infection through time. Only 0.4% of questing larval ticks were infected. Ticks having fed as larvae from short-tailed shrews, red squirrels, and opossums tended to have higher infection prevalence than did ticks having fed on other hosts. Further studies of the role of hosts in transmission are warranted. The locally high prevalence of B. miyamotoi in the New York/New England landscape suggests the importance of vigilance by health practitioners and the public.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


2017 ◽  
Vol 95 (8) ◽  
pp. 527-537 ◽  
Author(s):  
James W. Patterson ◽  
Anna M. Duncan ◽  
Kelsey C. McIntyre ◽  
Vett K. Lloyd

Ixodes scapularis Say, 1821 (the black-legged tick) is becoming established in Canada. The northwards expansion of I. scapularis leads to contact between I. scapularis and Ixodes cookei Packard, 1869, a well-established tick species in Eastern Canada. Examination of I. cookei and I. scapularis collected from New Brunswick revealed ticks with ambiguous morphologies, with either a mixture or intermediate traits typical of I. scapularis and I. cookei, including in characteristics typically used as species identifiers. Genetic analysis to determine if these ticks represent hybrids revealed that four had I. cookei derived mitochondrial DNA but I. scapularis nuclear DNA. In one case, the nuclear sequence showed evidence of heterozygosity for I. scapularis and I. cookei sequences, whereas in the others, the nuclear DNA appeared to be entirely derived from I. scapularis. These data strongly suggest genetic hybridization between these two species. Ixodes cookei and hybrid ticks were readily collected from humans and companion animals and specimens infected with Borrelia burgdorferi Johnson et al., 1984, the causative agent of Lyme disease, were identified. These findings raise the issue of genetic introgression of I. scapularis genes into I. cookei and warrant reassessment of the capacity of I. cookei and I. cookei × I. scapularis hybrids to vector Borrelia infection.


Sign in / Sign up

Export Citation Format

Share Document