Effect of Branched-Chain Keto-acids and Dietary Protein Content on the Activity of Branched-Chain Amino Acid Transferase in Rat Tissues

1978 ◽  
Vol 108 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Winnie Chan ◽  
Mackenzie Walser
1978 ◽  
Vol 235 (1) ◽  
pp. E47
Author(s):  
W E Mitch ◽  
W Chan

Isolated rat kidney perfused without substrate released serine, glycine, and taurine, and substantially smaller amounts of other amino acids. When branched-chain keto acids were added, the corresponding amino acids were released at rates amounting to 15-25% of keto acid disappearance. Perfusion with 2 mM alpha-keto-isovalerate or alpha-keto-beta-methylvalerate caused an increased glucose release amounting to 18-23% of keto acid disappearance. The activity of branched-chain amino acid transferase (BATase) was significantly stimulated by perfusion with the analogue of leucine, but not by perfusion with alpha-ketoglutarate, the analogues of valine or isoleucine, or with leucine itself. These findings document that the kidney converts branched-chain keto acids in part to the corresponding amino acids and suggest that the keto analogue of leucine may be involved in the control of renal BATase activity, thereby indirectly regulating the metabolism of branched-chain amino acids.


2004 ◽  
Vol 286 (1) ◽  
pp. E64-E76 ◽  
Author(s):  
Andrew J. Sweatt ◽  
Mac Wood ◽  
Agus Suryawan ◽  
Reidar Wallin ◽  
Mark C. Willingham ◽  
...  

We have examined the localization of the first two enzymes in the branched-chain amino acid (BCAA) catabolic pathway: the branched-chain aminotransferase (BCAT) isozymes (mitochondrial BCATm and cytosolic BCATc) and the branched-chain α-keto acid dehydrogenase (BCKD) enzyme complex. Antibodies specific for BCATm or BCATc were used to immunolocalize the respective isozymes in cryosections of rat tissues. BCATm was expressed in secretory epithelia throughout the digestive tract, with the most intense expression in the stomach. BCATm was also strongly expressed in secretory cells of the exocrine pancreas, uterus, and testis, as well as in the transporting epithelium of convoluted tubules in kidney. In muscle, BCATm was located in myofibrils. Liver, as predicted, was not immunoreactive for BCATm. Unexpectedly, BCATc was localized in elements of the autonomic innervation of the digestive tract, as well as in axons in the sciatic nerve. The distributions of BCATc and BCATm did not overlap. BCATm-expressing cells also expressed the second enzyme of the BCAA catabolic pathway, BCKD. In selected monkey and human tissues examined by immunoblot and/or immunohistochemistry, BCATm and BCATc were distributed in patterns very similar to those found in the rat. The results show that BCATm is in a position to regulate BCAA availability as protein precursors and anabolic signals in secretory portions of the digestive and other organ systems. The unique expression of BCATc in neurons of the peripheral nervous system, without coexpression of BCKD, raises new questions about the physiological function of this BCAT isozyme.


2019 ◽  
Vol 476 (15) ◽  
pp. 2235-2237
Author(s):  
Henver S. Brunetta ◽  
Graham P. Holloway

Abstract Branched-chain keto acids (BCKA) metabolism involves several well-regulated steps within mitochondria, requires cofactors, and is modulated according to the metabolic status of the cells. This regulation has made it challenging to utilize in vitro approaches to determine the contribution of branched-chain amino acid oxidation to energy production. These methodological issues were elegantly addressed in a recent publication within the Biochemical Journal. In this issue, Goldberg et al. [Biochem. J. (2019) 476, 1521–1537] demonstrated in a well-designed system the dependence of ATP and bicarbonate for BCKA full oxidation. In addition, the utilized system allowed the authors to characterize specific biochemical routes within mitochondria for each BCKA. Among them, a quantitative analysis of the participation of BCKA on mitochondrial flux was estimated between tissues. These findings are milestones with meaningful impact in several fields of metabolism.


1989 ◽  
Vol 69 (1) ◽  
pp. 131-140 ◽  
Author(s):  
R. J. EARLY ◽  
J. R. THOMPSON ◽  
R. J. CHRISTOPHERSON

The effects of intra external iliac arterial infusions of leucine (114 μmol h−1 kg0.75) and insulin (0.34 U h−1 kg0.75) into the hindlimb on net whole blood branched-chain amino acid (BCAA), plasma branched-chain α-keto acid (BCKA) and glucose exchange across the hindlimb (HL) and portal-drained viscera (PDV) were investigated in chronically catheterized cattle. Leucine infusions increased (P < 0.05) arterial leucine and α-ketoisocaproate concentrations but did not affect the concentrations of other BCAA, BCKA or glucose. Leucine infusions resulted in a 4-fold increase (P < 0.1) in the net HL removal of leucine and a small increase (P < 0.1) in the net HL release of α-ketoisocaproate. Net whole blood BCAA, plasma BCKA and plasma glucose exchange across the PDV were unaffected by leucine infusions. Insulin infusions decreased (P < 0.1) whole blood leucine, plasma α-ketoisocaproate and plasma glucose concentrations and increased (P < 0.1) the HL extraction of plasma glucose. The HL and PDV extraction of whole blood BCAA and plasma BCKA were unaffected by insulin infusions. The data suggest that cattle are less sensitive to the effects of leucine and insulin on tissue BCAA catabolism compared to nonruminant species. Key words: Branched-chain amino acid, branched-chain α-keto acid, leucine, insulin, cattle


1987 ◽  
Vol 67 (4) ◽  
pp. 1011-1020 ◽  
Author(s):  
RICHARD J. EARLY ◽  
JAMES R. THOMPSON ◽  
ROBERT J. CHRISTOPHERSON ◽  
GARY W. SEDGWICK

In the first of two experiments, whole blood branched-chain amino acid (BCAA) and plasma branched-chain α-keto acid (BCKA) concentrations in jugular venous blood were determined in cattle and sheep before and during a 6-d fast. In cattle, concentrations of valine, isoleucine, α-ketoisovalerate (KIV) and α-ketomethylvalerate (KMV) remained unchanged whereas leucine and α-ketoisocaproate (KTC) increased (P < 0.05) during fasting. In sheep, only KIV and KMV remained unchanged whereas BCAA and KIC increased (P < 0.05) during fasting. In a second experiment on cattle chronically catheterized to measure BCAA and BCKA exchange across the portal-drained viscera (PDV) and hindlimb (HL), the PDV added and the HL removed BCAA from the blood of fed cattle. The opposite exchange occurred after a 6-d fast. Releases of BCKA from the PDV and HL in both fed and fasted states were small compared to BCAA exchanges. The data suggest that blood BCAA but not BCKA concentrations may respond differently to starvation in sheep versus cattle and that in cattle the PDV and HL do not release appreciable amounts of BCKA relative to the net movements of the BCAA. Key words: Portal-drained viscera, hind limb, branched-chain amino acids, branched-chain α-keto acids, fasting, ruminants


1988 ◽  
Vol 255 (4) ◽  
pp. E475-E481 ◽  
Author(s):  
R. H. Miller ◽  
A. E. Harper

Activities of branched-chain amino acid (BCAA) aminotransferase (BCAT) and alpha-keto acid dehydrogenase (BCKD) were assayed in mitochondria isolated from kidneys of rats. Rates of transamination of valine and oxidation of keto acids alpha-ketoisocaproate (KIC) or alpha-ketoisovalerate (KIV) were estimated using radioactive tracers of the appropriate substrate from amounts of 14C-labeled products formed (14CO2 or [1-14C]-keto acid). Because of the high mitochondrial BCAT activity, an amino acceptor for BCAT, alpha-ketoglutarate (alpha-KG) or KIC, was added to the assay medium when valine was the substrate. Rates of valine transamination and subsequent oxidation of the KIV formed were determined with 0.5 mM alpha-KG as the amino acceptor; these rates were 5- to 50-fold those without added alpha-KG. Rates of CO2 evolution from valine also increased when KIC (0.01-0.10 mM) was present; however, with KIC concentrations above 0.2 mM, rates of CO2 evolution from valine declined although rates of transamination continued to rise. When 0.05 mM KIC was added to the assay medium, oxidation of KIC was suppressed by inclusion of valine or glutamate in the medium. When valine was present KIC was not oxidized preferentially, presumably because it was also serving as an amino acceptor for BCAT. These results indicate that as the supply of amino acceptor, alpha-KG or KIC, is increased in mitochondria not only is the rate of valine transamination stimulated but also the rate of oxidation of the KIV formed from valine.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 10 (11) ◽  
pp. 2367-2373
Author(s):  
CHRISTIANE L. MEIRELES ◽  
S. RUSS PRICE ◽  
ALINE M. L. PEREIRA ◽  
JOÃO T. A. CARVALHAES ◽  
WILLIAM E. MITCH

Abstract. In chronic uremia (CRF), malnutrition is an important determinant of morbidity in adults and impaired growth in children. Causes of malnutrition include anorexia and abnormal protein and amino acid metabolism. To determine how different levels of dietary protein and CRF interact to influence growth and nutritional status, CRF and sham-operated, pair-fed control rats were fed isocaloric diets containing 8, 17, or 30% protein for 21 d to mimic dietary regimens recommended for CRF patients: the minimum daily requirement; the recommended daily allowance; or an excess of dietary protein. Serum creatinine did not differ between groups of CRF rats but blood urea nitrogen was lowest in CRF rats fed 8% protein (P< 0.001). CRF rats eating 30% protein gained less weight and length compared to their controls or CRF rats fed 8 or 17% protein (P< 0.05); they also had acidemia. CRF rats fed 8% protein had the highest efficiency of utilization of protein for growth, while 17% protein promoted the highest efficiency of utilization of food and calories for growth. Notably, CRF rats eating 30% protein had the lowest protein efficiency; their calorie intake was also the lowest because of anorexia. Plasma branched-chain amino acids were progressively higher in control rats eating 8, 17, or 30% protein. CRF rats fed 8 or 17% protein had lower branched-chain amino acid concentrations compared with CRF rats fed 30% protein. In CRF, it is concluded that excessive dietary protein impairs growth but a low-protein diet does not impair nutritional responses and permits utilization of protein for growth if calories are sufficient.


1982 ◽  
Vol 202 (3) ◽  
pp. 777-783 ◽  
Author(s):  
H Kadowaki ◽  
W E Knox

The isoenzymic forms of branched-chain amino acid aminotransferase in mitochondria of rat tissues were compared with the better-known cytosolic forms in order to find any regular pattern of expression of these isoenzymes during development. Mitochondria of all tissues examined except brain contained only a type-I isoenzyme differing from the cytosolic type-I isoenzyme in heat stability and activation by mercaptoethanol. Foetal and adult brain mitochondria contained isoenzymes type III as well as type I. The large excess of type-I isoenzyme in foetal liver was localized in mitochondria, apparently of haematopoietic cells. The activity of this isoenzyme declined precipitously (by 80%) from day 19 of gestation at the same period and rate as does the volume fraction of haematopoietic cells that are then leaving the liver. Cortisol treatment accelerated the loss of these cells, and proportionally accelerated loss of the mitochondrial isoenzyme I. A development succession of type-I isoenzyme by the unique type II of liver parenchymal cell cytosols could not be demonstrated, since small, about equal, amounts of types I and II were always present in cytosols of foetal and adult liver. Developmental succession of isoenzymes within tissues was limited to cytosols and was demonstrated by the presence of cytosolic isoenzyme III in foetal and newborn skeletal muscle and kidney, organs which contain only isoenzyme I in the adult.


Sign in / Sign up

Export Citation Format

Share Document