branched chain keto acids
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 324 ◽  
Author(s):  
Milan Holeček

In hyperammonemic states, such as liver cirrhosis, urea cycle disorders, and strenuous exercise, the catabolism of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) is activated and BCAA concentrations decrease. In these conditions, BCAAs are recommended to improve mental functions, protein balance, and muscle performance. However, clinical trials have not demonstrated significant benefits of BCAA-containing supplements. It is hypothesized that, under hyperammonemic conditions, enhanced glutamine availability and decreased BCAA levels facilitate the amination of branched-chain keto acids (BCKAs; α-ketoisocaproate, α-keto-β-methylvalerate, and α-ketoisovalerate) to the corresponding BCAAs, and that BCKA supplementation may offer advantages over BCAAs. Studies examining the effects of ketoanalogues of amino acids have provided proof that subjects with hyperammonemia can effectively synthesize BCAAs from BCKAs. Unfortunately, the benefits of BCKA administration have not been clearly confirmed. The shortcoming of most reports is the use of mixtures intended for patients with renal insufficiency, which might be detrimental for patients with liver injury. It is concluded that (i) BCKA administration may decrease ammonia production, attenuate cataplerosis, correct amino acid imbalance, and improve protein balance and (ii) studies specifically investigating the effects of BCKA, without the interference of other ketoanalogues, are needed to complete the information essential for decisions regarding their suitability in hyperammonemic conditions.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Qutuba Karwi ◽  
Golam Mezbah Uddin ◽  
Cory S Wagg ◽  
Gary D Lopaschuk

Alterations in branched-chain amino acids (BCAA) oxidation have been linked to the development of cardiac insulin resistance and its negative impact on cardiac function. However, it is not clear if these detrimental effects are due to the accumulation of BCAAs or branched-chain keto acids (BCKAs). It is also unknown how impaired BCAAs oxidation mediates cardiac insulin resistance. To examine this, we specifically deleted mitochondrial branched-chain aminotransferase (BCATm) in the heart to selectively increase in BCAAs and decrease in BCKAs in the heart. BCATm -/- mice had normal cardiac function compared to their wildtype littermates (WT Cre+/+ ). However, there was a significant increase in insulin-stimulated cardiac glucose oxidation rates in BCATm -/- mice, independent of any changes in glucose uptake or glycolytic rates. This enhancement in cardiac insulin sensitivity was associated with an increase in the phosphorylation of Akt and activation of pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. To determine the impact of reversing these events, we examined the effects of increasing cardiac BCKAs on cardiac insulin sensitivity. We perfused isolated working mice hearts with high levels of BCKAs (α;-keto-isocaproate 80 μM, α;-keto-β;-methylvalorate 100μM, α;-keto-isovalorate 70 μM), levels that can be seen during diabetes and obesity. The BCKAs completely blunted insulin-stimulated glucose oxidation rates. We also found that BCKAs abolished insulin-stimulated mitochondrial translocation of Akt, an effect which was associated with PDH deactivation. We conclude that the accumulation of BCKAs, and not BCAAs, is a major contributor to cardiac insulin resistance via abrogating mitochondrial translocation of Akt.


2019 ◽  
Vol 476 (15) ◽  
pp. 2235-2237
Author(s):  
Henver S. Brunetta ◽  
Graham P. Holloway

Abstract Branched-chain keto acids (BCKA) metabolism involves several well-regulated steps within mitochondria, requires cofactors, and is modulated according to the metabolic status of the cells. This regulation has made it challenging to utilize in vitro approaches to determine the contribution of branched-chain amino acid oxidation to energy production. These methodological issues were elegantly addressed in a recent publication within the Biochemical Journal. In this issue, Goldberg et al. [Biochem. J. (2019) 476, 1521–1537] demonstrated in a well-designed system the dependence of ATP and bicarbonate for BCKA full oxidation. In addition, the utilized system allowed the authors to characterize specific biochemical routes within mitochondria for each BCKA. Among them, a quantitative analysis of the participation of BCKA on mitochondrial flux was estimated between tissues. These findings are milestones with meaningful impact in several fields of metabolism.


2017 ◽  
Vol 38 (3) ◽  
pp. 129-133 ◽  
Author(s):  
Ayuna HATTORI ◽  
Takahiro ITO ◽  
Makoto TSUNODA

Sign in / Sign up

Export Citation Format

Share Document