scholarly journals Genetically Modified NT2N Human Neuronal Cells Mediate Long-Term Gene Expression as CNS Grafts In Vivo and Improve Functional Cognitive Outcome Following Experimental Traumatic Brain Injury

2003 ◽  
Vol 62 (4) ◽  
pp. 368-380 ◽  
Author(s):  
Deborah J. Watson ◽  
Luca Longhi ◽  
Edward B. Lee ◽  
Carl T. Fulp ◽  
Scott Fujimoto ◽  
...  
Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 264-265
Author(s):  
Molly E Hubbard ◽  
Abdullah Bin Zahid ◽  
Gabrielle Meyer ◽  
Kathleen Vonderhaar ◽  
David Y Balser ◽  
...  

Abstract INTRODUCTION Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in the US. The effects of TBI on quality of life may not become apparent for years after the injury. There are conflicting reports in the literature regarding long term outcomes. Physicians are often asked to predict long term functional and cognitive outcomes, with limited data available. METHODS Patients with severe TBI (GCS = 9) who previously participated in a clinical trial during the 1980s were followed up with and compared to healthy controls without history of TBI. A health questionnaire, sports concussion assessment tool version 3 (SCAT3) and the Telephone Interview for Cognitive Status-modified (TICS-m) were completed over the phone and compared with controls using t-test. GCS at admission and 12-month GRS were used to predict to TICS-M at 30 years using linear regression. RESULTS >45 of the initial 168 subjects were confirmed alive, and 37 (13 females; mean age: 52.43 years S.D. 10.7) consented. Controls (n = 58; 23 females; mean age = 54 years, S.D. 11.5) had lower symptom severity score (6.7 S.D. 12.6 versus 20.6 S.D. 25.3; P = 0.005), lower total number of symptoms (3.4 S.D. 4.7 versus 7.12 S.D. 6.5; P = 0.006), higher standardized assessment of concussion score (25.6 S.D. 2.8 versus 21.2 S.D. 6.9; P = 0.001), and lower corrected MPAI-4 (22.3 S.D. 17.0 versus 43.7 S.D. 12.8; P < 0.001). GCS at admission did not predict cognitive status at 30-years assessed using TICS-M (P = 0.345). The Glasgow Outcome Scale score at 12-months was correlated to TICS-M at 30 years (R = 0.548, P < 0.001); each point decrease in GOS decreasing the score at TICS-M by 5.6 points. CONCLUSION Remote history of TBI disrupts the lives of survivors long after injury. Admission GCS does not predict cognitive status 30 years after TBI. The GOS at 12-months predicted the cognitive status assessed using TICS-M score at 30 years.


2013 ◽  
Vol 553 ◽  
pp. 18-23 ◽  
Author(s):  
Daowen Si ◽  
Haitao Wang ◽  
Qian Wang ◽  
Chengyun Zhang ◽  
Jingyu Sun ◽  
...  

2019 ◽  
Author(s):  
Ellen D. Witkowski ◽  
Şefik Evren Erdener ◽  
Kıvılcım Kılıç ◽  
Sreekanth Kura ◽  
Jianbo Tang ◽  
...  

AbstractTraumatic brain injury (TBI) is a major source of cognitive deficits affecting millions annually. The bulk of human injuries are mild, causing little or no macroscopic damage to neural tissue, yet can still lead to long-term neuropathology manifesting months or years later. Although the cellular stressors that ultimately lead to chronic pathology are poorly defined, one notable candidate is metabolic stress due to reduced cerebral blood flow (CBF), which is common to many forms of TBI. Here we used high-resolution in vivo intracranial imaging in a rodent injury model to characterize deficits in the cortical microcirculation during both acute and chronic phases after mild TBI. We found that CBF dropped precipitously during immediate post-injury periods, decreasing to less than half of baseline levels within minutes and remaining suppressed for 1.5-2 hours. Repeated time-lapse imaging of the cortical microvasculature revealed further striking flow deficits in the capillary network, where 18% of vessels were completely occluded for extended periods after injury, and an additional >50% showed substantial stoppages. Decreased CBF was paralleled by extensive vasoconstriction that is likely to contribute to loss of flow. Our data indicate a major role for vascular dysfunction in even mild forms of TBI, and suggest that acute post-injury periods may be key therapeutic windows for interventions that restore flow and mitigate metabolic stress.


NeuroImage ◽  
2009 ◽  
Vol 45 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Riikka J. Immonen ◽  
Irina Kharatishvili ◽  
Heidi Gröhn ◽  
Asla Pitkänen ◽  
Olli H.J. Gröhn

Sign in / Sign up

Export Citation Format

Share Document