Genetically modified bone morphogenetic protein signalling Alters traumatic brain injury-induced gene expression responses in the adult mouse

2006 ◽  
Vol 84 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Charlotte Israelsson ◽  
Anders Lewén ◽  
Annika Kylberg ◽  
Dmitry Usoskin ◽  
Susanna Althini ◽  
...  
2005 ◽  
Vol 12 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Daniel B. Michael ◽  
Donna M. Byers ◽  
Louis N. Irwin

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 454
Author(s):  
Jaime Palomino ◽  
Javiera Flores ◽  
Georges Ramirez ◽  
Victor H. Parraguez ◽  
Monica De los Reyes

The gene expression in the canine oviduct, where oocyte maturation, fertilization, and early embryonic development occur, is still elusive. This study determined the oviductal expression of (PR), cyclooxygenase-2 (COX-2), growth differentiation factor 9 (GDF-9), and bone morphogenetic protein 15 (BMP-15) during the canine oestrous cycle. Samples were collected from bitches at anoestrus (9), proestrus (7), oestrus (8), and dioestrus (11), after routine ovariohysterectomy and the ovarian surface structures and plasma progesterone concentration evaluated the physiological status of each donor. The oviductal cells were isolated and pooled. Total RNA was isolated, and gene expression was assessed by qPCR followed by analysis using the t-test and ANOVA. The PR mRNA increased (P < 0.05) from the anoestrus to dioestrus with the plasma progesterone concentration (r = 0.8). COX-2 mRNA expression was low in the anoestrus and proestrus, and negligible in the oestrus, while it was around 10-fold higher (P < 0.05) in the dioestrus. The GDF-9 mRNA was expressed during all phases of the oestrous cycle and was most abundant (P < 0.05) during oestrus phase. The BMP-15 mRNA decreased (P < 0.05) in the anoestrus and proestrus phases. Thus, the transcripts were differentially expressed in a stage-dependent manner, suggesting the importance of oestrous cycle regulation for successful reproduction in dogs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rani Matuk ◽  
Mandy Pereira ◽  
Janette Baird ◽  
Mark Dooner ◽  
Yan Cheng ◽  
...  

AbstractTraumatic brain injury (TBI) is of significant concern in the realm of high impact contact sports, including mixed martial arts (MMA). Extracellular vesicles (EVs) travel between the brain and oral cavity and may be isolated from salivary samples as a noninvasive biomarker of TBI. Salivary EVs may highlight acute neurocognitive or neuropathological changes, which may be particularly useful as a biomarker in high impact sports. Pre and post-fight samples of saliva were isolated from 8 MMA fighters and 7 from controls. Real-time PCR of salivary EVs was done using the TaqMan Human Inflammatory array. Gene expression profiles were compared pre-fight to post-fight as well as pre-fight to controls. Largest signals were noted for fighters sustaining a loss by technical knockout (higher impact mechanism of injury) or a full match culminating in referee decision (longer length of fight), while smaller signals were noted for fighters winning by joint or choke submission (lower impact mechanism as well as less time). A correlation was observed between absolute gene information signals and fight related markers of head injury severity. Gene expression was also significantly different in MMA fighters pre-fight compared to controls. Our findings suggest that salivary EVs as a potential biomarker in the acute period following head injury to identify injury severity and can help elucidate pathophysiological processes involved in TBI.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Amer Toutonji ◽  
Mamatha Mandava ◽  
Silvia Guglietta ◽  
Stephen Tomlinson

AbstractActivation of the complement system propagates neuroinflammation and brain damage early and chronically after traumatic brain injury (TBI). The complement system is complex and comprises more than 50 components, many of which remain to be characterized in the normal and injured brain. Moreover, complement therapeutic studies have focused on a limited number of histopathological outcomes, which while informative, do not assess the effect of complement inhibition on neuroprotection and inflammation in a comprehensive manner. Using high throughput gene expression technology (NanoString), we simultaneously analyzed complement gene expression profiles with other neuroinflammatory pathway genes at different time points after TBI. We additionally assessed the effects of complement inhibition on neuropathological processes. Analyses of neuroinflammatory genes were performed at days 3, 7, and 28 post injury in male C57BL/6 mice following a controlled cortical impact injury. We also characterized the expression of 59 complement genes at similar time points, and also at 1- and 2-years post injury. Overall, TBI upregulated the expression of markers of astrogliosis, immune cell activation, and cellular stress, and downregulated the expression of neuronal and synaptic markers from day 3 through 28 post injury. Moreover, TBI upregulated gene expression across most complement activation and effector pathways, with an early emphasis on classical pathway genes and with continued upregulation of C2, C3 and C4 expression 2 years post injury. Treatment using the targeted complement inhibitor, CR2-Crry, significantly ameliorated TBI-induced transcriptomic changes at all time points. Nevertheless, some immune and synaptic genes remained dysregulated with CR2-Crry treatment, suggesting adjuvant anti-inflammatory and neurotropic therapy may confer additional neuroprotection. In addition to characterizing complement gene expression in the normal and aging brain, our results demonstrate broad and chronic dysregulation of the complement system after TBI, and strengthen the view that the complement system is an attractive target for TBI therapy.


Sign in / Sign up

Export Citation Format

Share Document