Hydrologic balance, net primary productivity and water use efficiency of the introduced exotic Eucalyptus grandis × Eucalyptus urophylla plantation in south-western China

2019 ◽  
Author(s):  
Yanting Hu ◽  
Ping Zhao ◽  
Yuqing Huang ◽  
Liwei Zhu ◽  
Guangyan Ni ◽  
...  

Abstract Aims Land cover changes can disrupt water balance and alter the partitioning of precipitation into surface runoff, evapotranspiration and groundwater recharge. The widely planted Eucalyptus trees in south-western China have the potential to bring about hydrologic impacts. Our research aims to elucidate the hydrologic balance characteristics of the introduced exotic Eucalyptus grandis × Eucalyptus urophylla plantation and to assess whether its high productivity results from high water use efficiency (WUE) or large water consumption. Methods A 400-m2 experimental plot was established in an E. grandis × E. urophylla plantation in south-western China. Water balance components, including stand transpiration (Tr), evapotranspiration (Et) and runoff (R) were obtained as follows: Tr was estimated based on sap flow measurements, Et was estimated as the average of surface transpiration and evaporation weighted by the fractional green vegetation cover using a modeling approach, and R was collected using the installed metal frame. Net primary productivity (NPP) was obtained from allometric equation and annual diameter at breast height (DBH) increment determination. Important Findings Annual Et and Tr were 430 ± 31 and 239 ± 17 mm, respectively. Annual Tr accounts for 56 ± 8% of total evapotranspiration on average. WUE (NPP/Tr) of the E. grandis × E. urophylla was estimated to be 3.3–3.9 mmol·mol−1. Based on the comparative analysis of Tr and WUE, E. grandis × E. urophylla had a high productivity due to its high WUE without exhibiting prodigal water use. Meteorological factors including vapor pressure deficit and global solar radiation (Rs) were key factors regulating Et and Tr in our research site. Annual surface runoff, Et and canopy interception occupied 7%, 27–30% and 16% of total precipitation, while the remaining 46–50% of precipitation was used for sustaining groundwater recharge and altering soil water storage. The higher runoff coefficient (7.1%) indicated the weaker capability of E. grandis × E. urophylla to reserve water resource than natural forests and less disturbed plantations. The planting and protection of understory vegetation may decrease the surface runoff and exert beneficial effects on water conservation capacity of Eucalyptus plantation.




2020 ◽  
Author(s):  
Sinkyu Kang ◽  
Wenping Kang

<p>Changes in vegetation productivity and species composition have been used as conventional indicators of land degradation and rehabilitation assessments. The two biophysical parameters vary nonlinearly during land change process with various time lags, which provide, as a whole, a useful framework to diagnose degree of land degradation and rehabilitation. In this study, the net primary productivity (NPP) and water use efficiency (WUE), which are the proxies of vegetation productivity and ecophysiological properties related to species composition, were combined to develop an eco-physiological framework to assess the degree of land degradation in the Northeast-Asia dryland regions (NADR) from 1982 to 2012. Results from long-term trends analysis showed early, middle or late degradation stages occurred in northern grassland and central barren or sparsely vegetated regions, respectively, while the rehabilitation prevailed in eastern croplands and forest, southern, and western grassland. In contrast, short-term trend analysis illustrated the recent rehabilitation in mideastern Mongolia and Loess Plateau, which was unseen in long-term trend analysis. The spatial patterns and temporal changes of land degradation and rehabilitation could be explained partly by either or both natural and anthropogenic factors. Longterm drying and warming might induce land degradation in northern and central NADR, respectively, while the recovery projects and wetting conditions after 2000s promoted the land rehabilitation in Loess Plateau and mid-eastern Mongolia. Here, our NPP–WUE framework may contribute further conceptual development and rapid assessments on land degradation and rehabilitation in wide geographic regions.</p>







2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chuanjiang Tang ◽  
Xinyu Fu ◽  
Dong Jiang ◽  
Jingying Fu ◽  
Xinyue Zhang ◽  
...  

Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands.







Sign in / Sign up

Export Citation Format

Share Document