scholarly journals Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and In Situ Observations

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chuanjiang Tang ◽  
Xinyu Fu ◽  
Dong Jiang ◽  
Jingying Fu ◽  
Xinyue Zhang ◽  
...  

Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands.

2017 ◽  
Vol 40 (8) ◽  
pp. 1592-1608 ◽  
Author(s):  
Fabien Charbonnier ◽  
Olivier Roupsard ◽  
Guerric le Maire ◽  
Joannès Guillemot ◽  
Fernando Casanoves ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1441
Author(s):  
Jin Han Park ◽  
Jianbang Gan ◽  
Chan Park

The net primary productivity (NPP) of a forest is an important indicator of its potential for the provision of ecosystem services such as timber, carbon, and biodiversity. However, accurately and consistently quantifying global forest NPP remains a challenge in practice. We converted carbon stock changes using the Global Forest Resources Assessment (FRA) data and carbon losses associated with disturbances and timber removals into an NPP equivalent measurement (FRA NPP*) and compared it with the NPP derived from the MODIS satellite data (MOD17 NPP) for the world’s forests. We found statistically significant differences between the two NPP estimates, with the FRA NPP* being lower than the MOD17 NPP; the differences were correlated with forest cover, normalized difference vegetation index (NDVI), and GDP per capita in countries, and may also stem from the NPP estimation methods and scopes. While the former explicitly accounts for carbon losses associated with timber removals and disturbances, the latter better reflects the principles of photosynthesis. The discrepancies between the two NPP estimates increase in countries with a low income or low forest cover, calling for enhancing their forest resource assessment capacity. By identifying the discrepancies and underlying factors, we also provide new insights into the relationships between the MOD17 NPP and global forest carbon stock estimates, motivating and guiding future research to improve the robustness of quantifying global forest NPP and carbon sequestration potential.


Sign in / Sign up

Export Citation Format

Share Document