scholarly journals From Deep Inference to Proof Nets via Cut Elimination

2009 ◽  
Vol 21 (4) ◽  
pp. 589-624 ◽  
Author(s):  
L. Strassburger
2007 ◽  
Vol 17 (2) ◽  
pp. 341-359 ◽  
Author(s):  
MICHELE PAGANI

We study full completeness and syntactical separability of MLL proof nets with the mix rule. The general method we use consists of first addressing these two questions in the less restrictive framework of proof structures, and then adapting the results to proof nets.At the level of proof structures, we find a semantical characterisation of their interpretations in relational semantics, and define an observational equivalence that is proved to be the equivalence induced by cut elimination. Hence, we obtain a semantical characterisation (in coherent spaces) and an observational equivalence for the proof nets with the mix rule.


2003 ◽  
Vol 13 (3) ◽  
pp. 409-450 ◽  
Author(s):  
ROBERTO DI COSMO ◽  
DELIA KESNER ◽  
EMMANUEL POLONOVSKI

We refine the simulation technique introduced in Di Cosmo and Kesner (1997) to show strong normalisation of $\l$-calculi with explicit substitutions via termination of cut elimination in proof nets (Girard 1987). We first propose a notion of equivalence relation for proof nets that extends the one in Di Cosmo and Guerrini (1999), and show that cut elimination modulo this equivalence relation is terminating. We then show strong normalisation of the typed version of the $\ll$-calculus with de Bruijn indices (a calculus with full composition defined in David and Guillaume (1999)) using a translation from typed $\ll$ to proof nets. Finally, we propose a version of typed $\ll$ with named variables, which helps to give a better understanding of the complex mechanism of the explicit weakening notation introduced in the $\ll$-calculus with de Bruijn indices (David and Guillaume 1999).


2020 ◽  
Vol 30 (1) ◽  
pp. 157-174 ◽  
Author(s):  
Harley Eades III ◽  
Valeria de Paiva

Abstract Full intuitionistic linear logic (FILL) was first introduced by Hyland and de Paiva, and went against current beliefs that it was not possible to incorporate all of the linear connectives, e.g. tensor, par and implication, into an intuitionistic linear logic. Bierman showed that their formalization of FILL did not enjoy cut elimination as such, but Bellin proposed a small change to the definition of FILL regaining cut elimination and using proof nets. In this note we adopt Bellin’s proposed change and give a direct proof of cut elimination for the sequent calculus. Then we show that a categorical model of FILL in the basic dialectica category is also a linear/non-linear model of Benton and a full tensor model of Melliès’ and Tabareau’s tensorial logic. We give a double-negation translation of linear logic into FILL that explicitly uses par in addition to tensor. Lastly, we introduce a new library to be used in the proof assistant Agda for proving properties of dialectica categories.


1998 ◽  
Vol 8 (6) ◽  
pp. 543-558 ◽  
Author(s):  
DENIS BECHET

Almost a decade ago, Girard invented linear logic with the notion of a proof-net. Proof-nets are special graphs built from formulas, links and boxes. However, not all nets are proof-nets. First, they must be well constructed (we say that such graphs are proof-structures). Second, a proof-net is a proof-structure that corresponds to a sequential proof. It must satisfy a correctness criterion. One may wonder what this static criterion means for cut-elimination. We prove that every incorrect proof-structure (without cut) can be put in an environment where reductions lead to two kinds of basically wrong configurations: deadlocks and disconnected proof-structures. Thus, this proof says that there does not exist a bigger class of proof-structures than proof-nets where normalization does not lead to obviously bad configurations.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Jules Chouquet ◽  
Lionel Vaux Auclair

We examine some combinatorial properties of parallel cut elimination in multiplicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some paths, we can bound the size of all the nets satisfying this constraint and reducing to a fixed resultant net. This result gives a sufficient condition for an infinite weighted sum of nets to reduce into another sum of nets, while keeping coefficients finite. We moreover show that our constraints are stable under reduction. Our approach is motivated by the quantitative semantics of linear logic: many models have been proposed, whose structure reflect the Taylor expansion of multiplicative exponential linear logic (MELL) proof nets into infinite sums of differential nets. In order to simulate one cut elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the differential nets of its Taylor expansion. It turns out our results apply to differential nets, because their cut elimination is essentially multiplicative. We moreover show that the set of differential nets that occur in the Taylor expansion of an MELL net automatically satisfies our constraints. Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets and the dynamics of cut elimination. The paths on which we impose bounds are the switching paths involved in the Danos--Regnier criterion for sequentiality. In order to accommodate multiplicative units and weakenings, our nets come equipped with jumps: each weakening node is connected to some other node. Our constraint can then be summed up as a bound on both the length of switching paths, and the number of weakenings that jump to a common node.


2016 ◽  
Vol 28 (7) ◽  
pp. 1204-1252
Author(s):  
PAOLO DI GIAMBERARDINO

In previous works, by importing ideas from game semantics (notably Faggian–Maurel–Curien'sludics nets), we defined a new class of multiplicative/additive polarized proof nets, calledJ-proof nets. The distinctive feature of J-proof nets with respect to other proof net syntaxes, is the possibility of representing proof nets which are partially sequentialized, by usingjumps(that is, untyped extra edges) as sequentiality constraints. Starting from this result, in the present work, we extend J-proof nets to the multiplicative/exponential fragment, in order to take into account structural rules: More precisely, we replace the familiar linear logic notion of exponential box with a less restricting one (calledcone) defined by means of jumps. As a consequence, we get a syntax for polarized nets where, instead of a structure of boxes nested one into the other, we have one of cones which can bepartially overlapping. Moreover, we define cut-elimination for exponential J-proof nets, proving, by a variant of Gandy's method, that even in case of ‘superposed’ cones, reduction enjoys confluence and strong normalization.


Sign in / Sign up

Export Citation Format

Share Document