Rescue Ventral Intermediate Thalamus Deep Brain Stimulation to Address Refractory Tremor Following Subthalamic Nucleus Deep Brain Stimulation With Brittle Dyskinesia

2020 ◽  
pp. 115-118
Author(s):  
Mitra Afshari ◽  
Jill L. Ostrem ◽  
Marta San Luciano ◽  
Paul S. Larson

This chapter discusses a case in which a “rescue” deep brain stimulation (DBS) lead was implanted to address suboptimal tremor control. The patient was a 52-year-old woman with disabling bilateral postural and action hand tremor who also had mild parkinsonian signs. An essential tremor (ET)–Parkinson disease (PD) syndrome was suspected, and subthalamic nucleus (STN) DBS was pursued. Attempts at optimizing tremor control by reprogramming were limited by the induction of brittle dyskinesia even with small amounts of stimulation. Bilateral ventral intermediate thalamus DBS leads were then implanted, and the tremors improved significantly. Troubleshooting strategies for optimizing tremor control and reducing STN DBS–induced brittle dyskinesia are discussed. The chapter reviews important learning points on DBS target selection for ET, PD, and ET-PD spectrum syndromes.

2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients >75 yr old, 52 patients <75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


2008 ◽  
Vol 273 (1-2) ◽  
pp. 19-24 ◽  
Author(s):  
Jae-Hyeok Heo ◽  
Kyoung-Min Lee ◽  
Sun Ha Paek ◽  
Min-Jeong Kim ◽  
Jee-Young Lee ◽  
...  

2008 ◽  
Vol 109 (2) ◽  
pp. 325-329 ◽  
Author(s):  
David A. Sun ◽  
Hong Yu ◽  
John Spooner ◽  
Armanda D. Tatsas ◽  
Thomas Davis ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective neurosurgical treatment for Parkinson disease. Tissue reaction to chronic DBS therapy and the definitive location of active stimulation contacts are best studied on a postmortem basis in patients who have undergone DBS. The authors report the postmortem analysis of STN DBS following 5 years and 11 months of effective chronic stimulation including the histologically verified location of the active contacts associated with bilateral implants. They also describe tissue response to intraoperative test passes with recording microelectrodes and stimulating semimacroelectrodes. The results indicated that 1) the neural tissue surrounding active and nonactive contacts responds similarly, with a thin glial capsule and foreign-body giant cell reaction surrounding the leads as well as piloid gliosis, hemosiderin-laden macrophages, scattered lymphocytes, and Rosenthal fibers; 2) there was evidence of separate tracts in the adjacent tissue for intraoperative microelectrode and semimacroelectrode passes together with reactive gliosis, microcystic degeneration, and scattered hemosiderin deposition; and 3) the active contacts used for ~ 6 years of effective bilateral DBS therapy lie in the zona incerta, just dorsal to the rostral STN. To the authors' knowledge, the period of STN DBS therapy herein described for Parkinson disease and subjected to postmortem analysis is the longest to date.


2006 ◽  
Vol 58 (suppl_1) ◽  
pp. ONS-96-ONS-102 ◽  
Author(s):  
Ramin Amirnovin ◽  
Ziv M. Williams ◽  
G. Rees Cosgrove ◽  
Emad N. Eskandar

Abstract OBJECTIVE: Subthalamic deep brain stimulation (DBS) has rapidly become the standard surgical therapy for medically refractory Parkinson disease. However, in spite of its wide acceptance, there is considerable variability in the technical approach. This study details our technique and experience in performing microelectrode recording (MER) guided subthalamic nucleus (STN) DBS in the treatment of Parkinson disease. METHODS: Forty patients underwent surgery for the implantation of 70 STN DBS electrodes. Stereotactic localization was performed using a combination of magnetic resonance and computed tomographic imaging. We used an array of three microelectrodes, separated by 2 mm, for physiological localization of the STN. The final location was selected based on MER and macrostimulation through the DBS electrode. RESULTS: The trajectory selected for the DBS electrode had an average pass through the STN of 5.6 ± 0.4 mm on the left and 5.7 ± 0.4 mm on the right. The predicted location was used in 42% of the cases but was modified by MER in the remaining 58%. Patients were typically discharged on the second postoperative day. Eighty-five percent of patients were sent home, 13% required short-term rehabilitation, and one patient required long-term nursing services. Seven complications occurred over 4 years. Four patients suffered small hemorrhages, one patient experienced a lead migration, one developed an infection of the pulse generator, and one patient suffered from a superficial cranial infection. CONCLUSION: Simultaneous bilateral MER-guided subthalamic DBS is a relatively safe and well-tolerated procedure. MER plays an important role in optimal localization of the DBS electrodes.


2007 ◽  
Vol 106 (4) ◽  
pp. 626-632 ◽  
Author(s):  
Jerzy L. Slowinski ◽  
John D. Putzke ◽  
Ryan J. Uitti ◽  
John A. Lucas ◽  
Margaret F. Turk ◽  
...  

Object The object of this study was to assess the results of unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) for management of advanced Parkinson disease (PD). Methods A clinical series of 24 patients (mean age 71 years, range 56–80 years) with medically intractable PD, who were undergoing unilateral magnetic resonance imaging–targeted, electrophysiologically guided STN DBS, completed a battery of qualitative and quantitative outcome measures preoperatively (baseline) and postoperatively, using a modified Core Assessment Program for Intracerebral Transplantations protocol. The mean follow-up period was 9 months. Statistically significant improvement was observed in the Unified Parkinson's Disease Rating Scale (UPDRS) Part II score (18%), the total UPDRS PART III score (31%), the contralateral UPDRS Part III score (63%), and scores for axial motor features (19%), contralateral tremor (88%), rigidity (60%), bradykinesia (54%), and dyskinesia (69%), as well as the Parkinson's Disease Quality of Life questionnaire score (15%) in the on-stimulation state compared with baseline. Ipsilateral symptoms improved by approximately 15% or less. Performance on the Purdue pegboard test improved in the contralateral hand in the on-stimulation state compared with the off-stimulation state (38%, p < 0.05). The daily levodopa-equivalent dose was reduced by 21% (p = 0.018). Neuropsychological tests revealed an improvement in mental flexibility and a trend toward reduced letter fluency. There were no permanent surgical complications. Of the 16 participants with symmetrical disease, five required implantation of the DBS unit on the second side. Conclusions Unilateral STN DBS is an effective and safe treatment for selected patients with advanced PD. Unilateral STN DBS provides improvement of contralateral motor symptoms of PD as well as quality of life, reduces requirements for medication, and possibly enhances mental flexibility. This method of surgical treatment may be associated with a reduced risk and may provide an alternative to bilateral STN DBS for PD, especially in older patients or patients with asymmetry of parkinsonism.


2021 ◽  
pp. 1-8
Author(s):  
Katherine Leaver ◽  
Aaron Viser ◽  
Brian H. Kopell ◽  
Roberto A. Ortega ◽  
Joan Miravite ◽  
...  

OBJECTIVE The objective of this study was to evaluate clinical features and response to deep brain stimulation (DBS) in G2019S LRRK2-Parkinson disease (LRRK2-PD) and idiopathic PD (IPD). METHODS The authors conducted a clinic-based cohort study of PD patients recruited from the Mount Sinai Beth Israel Genetics database of PD studies. The cohort included 87 participants with LRRK2-PD (13 who underwent DBS) and 14 DBS participants with IPD enrolled between 2009 and 2017. The baseline clinical features, including motor ratings and levodopa-equivalent daily dose (LEDD), were compared among LRRK2-PD patients with and without DBS, between LRRK2-PD with DBS and IPD with DBS, and between LRRK2-PD with subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) DBS. Longitudinal motor scores (Unified Parkinson’s Disease Rating Scale–part III) and medication usage were also assessed pre- and postoperatively. RESULTS Compared to LRRK2-PD without DBS (n = 74), the LRRK2-PD with DBS cohort (n = 13) had a significantly younger age of onset, longer disease duration, were more likely to have dyskinesia, and were less likely to experience hand tremor at disease onset. LRRK2-PD participants were also more likely to be referred for surgery because of severe dyskinesia (11/13 [85%] vs 6/14 [43%], p = 0.04) and were less likely to be referred for medically refractory tremor (0/13 [0%] vs 6/14 [43%], p = 0.02) than were IPD patients. Among LRRK2-PD patients, both STN-DBS and GPi-DBS targets were effective, although the sample size was small for both groups. There were no revisions or adverse effects reported in the GPi-DBS group, while 2 of the LRRK2-PD participants who underwent STN-DBS required revisions and a third reported depression as a stimulation-related side effect. Medication reduction favored the STN group. CONCLUSIONS The LRRK2-PD cohort referred for DBS had a slightly different profile, including earlier age of onset and dyskinesia. Both the STN and GPi DBS targets were effective in symptom suppression. Patients with G2019S LRRK2 PD were well-suited for DBS therapy and had favorable motor outcomes regardless of the DBS target. LRRK2-DBS patients had longer disease durations and tended to have more dyskinesia. Dyskinesia commonly served as the trigger for DBS surgical candidacy. Medication-refractory tremor was not a common indication for surgery in the LRRK2 cohort.


2019 ◽  
Vol 130 (4) ◽  
pp. 1224-1233 ◽  
Author(s):  
John A. Thompson ◽  
Salam Oukal ◽  
Hagai Bergman ◽  
Steven Ojemann ◽  
Adam O. Hebb ◽  
...  

OBJECTIVEDeep brain stimulation (DBS) of the subthalamic nucleus (STN) has become standard care for the surgical treatment of Parkinson’s disease (PD). Reliable interpretation of microelectrode recording (MER) data, used to guide DBS implantation surgery, requires expert electrophysiological evaluation. Recent efforts have endeavored to use electrophysiological signals for automatic detection of relevant brain structures and optimal implant target location.The authors conducted an observational case-control study to evaluate a software package implemented on an electrophysiological recording system to provide online objective estimates for entry into and exit from the STN. In addition, they evaluated the accuracy of the software in selecting electrode track and depth for DBS implantation into STN, which relied on detecting changes in spectrum activity.METHODSData were retrospectively collected from 105 MER-guided STN-DBS surgeries (4 experienced neurosurgeons; 3 sites), in which estimates for entry into and exit from the STN, DBS track selection, and implant depth were compared post hoc between those determined by the software and those determined by the implanting neurosurgeon/neurophysiologist during surgery.RESULTSThis multicenter study revealed submillimetric agreement between surgeon/neurophysiologist and software for entry into and exit out of the STN as well as optimal DBS implant depth.CONCLUSIONSThe results of this study demonstrate that the software can reliably and accurately estimate entry into and exit from the STN and select the track corresponding to ultimate DBS implantation.


2020 ◽  
pp. 161-168
Author(s):  
Qiang Zhang ◽  
Teri R. Thomsen

Deep brain stimulation (DBS) targeting the ventral intermediate (Vim) nucleus of thalamus has been established as an effective therapy for patients with debilitating essential tremor. However, some patients initially diagnosed with essential tremor (ET) later develop idiopathic Parkinson disease (PD), and Vim DBS is not as effective for other PD-related symptoms, including bradykinesia, rigidity, and dyskinesia. This chapter describes a patient with PD who initially presented with debilitating right-dominant tremor that was misdiagnosed as ET. He received bilateral Vim DBS with good tremor control. Two years later, he received bilateral globus pallidus internus (GPi) DBS for progression of his PD, and he has been reporting adequate relief of his PD symptoms. For patients with debilitating tremor, but relatively mild or no parkinsonian symptoms on presentation, after medical trials have been administered, a Vim DBS is a reasonable option for tremor relief. A second DBS placement targeting the GPi or subthalamic nucleus (STN) may be considered if more parkinsonian symptoms evolve and progress.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012246
Author(s):  
Francesco Bove ◽  
Delia Mulas ◽  
Francesco Cavallieri ◽  
Anna Castrioto ◽  
Stephan Chabardès ◽  
...  

Objective:To evaluate the effects of deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson disease (PD) patients on motor complications beyond 15 years after surgery.Methods:Data about motor complications, quality of life (QoL), activities of daily living, the UPDRS motor scores, dopaminergic treatment, stimulation parameters, and side effects of STN-DBS were retrospectively retrieved and compared between before surgery, at 1 year and beyond 15 years after bilateral STN-DBS.Results:Fifty-one patients with 17.06 ± 2.18 years STN-DBS follow-up were recruited. Compared to baseline, the time spent with dyskinesia and the time spent in the off state were reduced by 75% (p<0.001) and by 58.7% (p<0.001), respectively. Moreover, dopaminergic drugs were reduced by 50.6% (p<0.001). The PDQL total score, and the emotional function and social function domains improved of 13.8% (p=0.005), 13.6% (p=0.01) and 29.9% (p<0.001), respectively. Few and mostly manageable device-related adverse events were observed during the follow-up.Conclusions:STN-DBS is still effective beyond 15 years from the intervention, notably with significant improvement in motor complications and stable reduction of dopaminergic drugs. Furthermore, despite the natural continuous progression of PD with worsening of levodopa-resistant motor and non-motor symptoms over the years, STN-DBS patients could maintain an improvement in QoL.Classification of Evidence:This study provides Class IV evidence that, for patients with PD, STN-DBS remains effective at treating motor complications 15 years after surgery.


Sign in / Sign up

Export Citation Format

Share Document