Long-term Outcomes (15 Years) After Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012246
Author(s):  
Francesco Bove ◽  
Delia Mulas ◽  
Francesco Cavallieri ◽  
Anna Castrioto ◽  
Stephan Chabardès ◽  
...  

Objective:To evaluate the effects of deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson disease (PD) patients on motor complications beyond 15 years after surgery.Methods:Data about motor complications, quality of life (QoL), activities of daily living, the UPDRS motor scores, dopaminergic treatment, stimulation parameters, and side effects of STN-DBS were retrospectively retrieved and compared between before surgery, at 1 year and beyond 15 years after bilateral STN-DBS.Results:Fifty-one patients with 17.06 ± 2.18 years STN-DBS follow-up were recruited. Compared to baseline, the time spent with dyskinesia and the time spent in the off state were reduced by 75% (p<0.001) and by 58.7% (p<0.001), respectively. Moreover, dopaminergic drugs were reduced by 50.6% (p<0.001). The PDQL total score, and the emotional function and social function domains improved of 13.8% (p=0.005), 13.6% (p=0.01) and 29.9% (p<0.001), respectively. Few and mostly manageable device-related adverse events were observed during the follow-up.Conclusions:STN-DBS is still effective beyond 15 years from the intervention, notably with significant improvement in motor complications and stable reduction of dopaminergic drugs. Furthermore, despite the natural continuous progression of PD with worsening of levodopa-resistant motor and non-motor symptoms over the years, STN-DBS patients could maintain an improvement in QoL.Classification of Evidence:This study provides Class IV evidence that, for patients with PD, STN-DBS remains effective at treating motor complications 15 years after surgery.

Neurosurgery ◽  
2010 ◽  
Vol 67 (3) ◽  
pp. 626-632 ◽  
Author(s):  
Han-Joon Kim ◽  
Beom S. Jeon ◽  
Sun Ha Paek ◽  
Jee-Young Lee ◽  
Hee Jin Kim ◽  
...  

Abstract BACKGROUND Previous studies have shown that subthalamic nucleus (STN) deep brain stimulation (DBS) improves tremor in Parkinson disease (PD). However, the patients included in those studies were unselected for tremor severity. OBJECTIVE We specifically assessed the effect of STN DBS on tremor in selected PD patients with severe tremor. METHODS Seventy-two PD patients who had received bilateral STN DBS were included. The effects of STN DBS on the off-medication tremor, the on-medication tremor, and the off-medication action tremor in patients selected as the worst one-third in each category at baseline were evaluated after a mean duration of &gt; 2 years. RESULTS In patients with severe off-medication tremor, off-medication tremor score improved from 12.28 ± 2.80 at baseline to 1.93 ± 2.85 at the last follow-up (P &lt; .001). The off-medication tremor in the off-stimulation state at the last follow-up was less severe than the preoperative off-medication tremor. In patients with severe on-medication tremor, on-medication tremor score improved from 6.17 ± 2.45 to 1.35 ± 2.58 (P &lt; .001). In patients with severe off-medication action tremor, off-medication action tremor score improved from 5.08 ± 1.35 to 1.24 ± 1.42 (P &lt; .001). CONCLUSION STN DBS is effective for severe off- and on-medication tremor and off-medication action tremor in PD. Our findings suggest that STN DBS reduces PD tremor through, at least in part, its effect on the tremor-generating mechanism independent of dopaminergic transmission and that long-term electrical stimulation of STN might induce a structural or neurochemical change leading to the improvement of tremor.


2003 ◽  
Vol 99 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Galit Kleiner-Fisman ◽  
David N. Fisman ◽  
Elspeth Sime ◽  
Jean A. Saint-Cyr ◽  
Andres M. Lozano ◽  
...  

Object. The use of deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been associated with a marked initial improvement in individuals with advanced Parkinson disease (PD). Few data are available on the long-term outcomes of this procedure, however, or whether the initial benefits are sustained over time. The authors present the long-term results of a cohort of 25 individuals who underwent bilateral DBS of the STN between 1996 and 2001 and were followed up for 1 year or longer after implantation of the stimulator. Methods. Patients were evaluated at baseline and repeatedly after surgery by using the Unified Parkinson's Disease Rating Scale (UPDRS); the scale was applied to patients during periods in which antiparkinsonian medications were effective and periods when their effects had worn off. Postoperative UPDRS total scores and subscores, dyskinesia scores, and drug dosages were compared with baseline values, and changes in the patients' postoperative scores were evaluated to assess the possibility that the effect of DBS diminished over time. In this cohort the median duration of follow-up review was 24 months (range 12–52 months). The combined (ADL and motor) total UPDRS score during the medication-off period improved after 1 year, decreasing by 42% relative to baseline (95% confidence interval [CI 35–50%], p < 0.001) and the motor score decreased by 48% (95% CI 42–55%, p < 0.001). These gains did diminish over time, although a sustained clinical benefit remained at the time of the last evaluation (41% improvement over baseline, 95% CI 31–50%; p < 0.001). Axial subscores at the time of the last evaluation showed only a trend toward improvement (p = 0.08), in contrast to scores for total tremor (p < 0.001), rigidity (p < 0.001), and bradykinesia (p = 0.003), for which highly significant differences from baseline were still present at the time of the last evaluation. Medication requirements diminished substantially, with total medication doses reduced by 38% (95% CI 27–48%, p < 0.001) at 1 year and 36% (95% CI 25–48%, p < 0.001) at the time of the last evaluation; this decrease may have accounted, at least in part, for the significant decrease of 46.4% (95% CI 20.2–72.5%, p = 0.007) in dyskinesia scores obtained by patients during the medication-on period. No preoperative demographic variable, such as the patient's age at the time of disease onset, age at surgery, sex, duration of disease before surgery, preoperative drug dosage, or preoperative severity of dyskinesia, was predictive of long-term outcome. The only predictor of a better outcome was the patient's preoperative response to levodopa. Conclusions. In this group of patients with advanced PD who underwent bilateral DBS of the STN, sustained improvement in motor function was present a mean of 2 years after the procedure, and sustained reductions in drug requirements were also achieved. Improvements in tremor, rigidity, and bradykinesia were more marked and better sustained over time than improvements in axial symptoms. A good preoperative response to levodopa predicted a good response to surgery.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yu Diao ◽  
Yutong Bai ◽  
Tianqi Hu ◽  
Zixiao Yin ◽  
Huangguang Liu ◽  
...  

Pain from Parkinson's disease (PD) is a non-motor symptom affecting the quality of life and has prevalence of 20–80%. However, it is unclear whether subthalamic nucleus deep brain stimulation (STN–DBS), a well-established treatment for PD, is effective forPD-related pain. Thus, the objective of this meta-analysis was to investigate the efficacy of STN-DBS on PD-related pain and explore how its duration affects the efficacy of STN-DBS. A systematic search was performed using PubMed, Embase, and the Cochrane Library. Nine studies included numerical rating scale (NRS), visual analog scale (VAS), or non-motor symptom scale (NMSS) scores at baseline and at the last follow-up visit and therefore met the inclusion criteria of the authors. These studies exhibited moderate- to high-quality evidence. Two reviewers conducted assessments for study eligibility, risk of bias, data extraction, and quality of evidence rating. Random effect meta-analysis revealed a significant change in PD-related pain as assessed by NMSS, NRS, and VAS (P &lt;0.01). Analysis of the short and long follow-up subgroups indicated delayed improvement in PD-related pain. These findings (a) show the efficacy of STN-DBS on PD-related pain and provide higher-level evidence, and (b) implicate delayed improvement in PD-related pain, which may help programming doctors with supplement selecting target and programming.Systematic Review Registration: This study is registered in Open Science Framework (DOI: 10.17605/OSF.IO/DNM6K).


Author(s):  
Azari H ◽  

Background: Deep Brain Stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson’s Disease (PD). The two most common sites for DBS are the Subthalamic Nucleus (STN) and Globus Pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared. Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson’s Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3) at least five participants in each group; (4) conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS III scores. Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


Neurology ◽  
2019 ◽  
Vol 92 (10) ◽  
pp. e1109-e1120 ◽  
Author(s):  
W.M. Michael Schuepbach ◽  
Lisa Tonder ◽  
Alfons Schnitzler ◽  
Paul Krack ◽  
Joern Rau ◽  
...  

ObjectiveTo investigate predictors for improvement of disease-specific quality of life (QOL) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson disease (PD) with early motor complications.MethodsWe performed a secondary analysis of data from the previously published EARLYSTIM study, a prospective randomized trial comparing STN-DBS (n = 124) to best medical treatment (n = 127) after 2 years follow-up with disease-specific QOL (39-item Parkinson's Disease Questionnaire summary index [PDQ-39-SI]) as the primary endpoint. Linear regression analyses of the baseline characteristics age, disease duration, duration of motor complications, and disease severity measured at baseline with the Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS-III “off” and “on” medications, UPDRS-IV) were conducted to determine predictors of change in PDQ-39-SI.ResultsPDQ-39-SI at baseline was correlated to the change in PDQ-39-SI after 24 months in both treatment groups (p < 0.05). The higher the baseline score (worse QOL) the larger the improvement in QOL after 24 months. No correlation was found for any of the other baseline characteristics analyzed in either treatment group.ConclusionImpaired QOL as subjectively evaluated by the patient is the most important predictor of benefit in patients with PD and early motor complications, fulfilling objective gold standard inclusion criteria for STN-DBS. Our results prompt systematically including evaluation of disease-specific QOL when selecting patients with PD for STN-DBS.Clinicaltrials.gov identifierNCT00354133.


2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients &gt;75 yr old, 52 patients &lt;75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


Author(s):  
Chencheng Zhang ◽  
Linbin Wang ◽  
Wei Hu ◽  
Tao Wang ◽  
Yijie Zhao ◽  
...  

Abstract BACKGROUND Subthalamic nucleus (STN) and globus pallidus interna (GPi) are the most effective targets in deep brain stimulation (DBS) treatment for Parkinson disease (PD). However, the individualized selection of targets remains a clinical challenge. OBJECTIVE To combine unilateral STN and contralateral GPi stimulation (STN DBS in one brain hemisphere and GPi DBS in the other) to maximize the clinical advantages of each target while inducing fewer adverse side effects in selected patients with PD because each target has its own clinical effects and risk profiles. METHODS We reviewed the clinical outcomes of 8 patients with idiopathic PD treated with combined unilateral STN and contralateral GPi DBS. Clinical outcome assessments, focusing on motor and nonmotor symptoms, were performed at baseline and 6-mo and 12-mo follow-up. We performed the assessments under the following conditions: medication on and off (bilateral stimulation on and off and unilateral STN stimulation on). RESULTS Patients showed a significant improvement in motor symptoms, as assessed by the Unified Parkinson Disease Rating Scale III (UPDRS-III) and Timed Up-and-Go Test (TUG), in the off-medication/on-stimulation state at 6-mo and 12-mo follow-up. Also, patients reported a better quality of life, and their intake of levodopa was reduced at 12-mo follow-up. In the on-medication condition, bilateral stimulation was associated with an improvement in axial symptoms, with a 64% improvement in measures of gait and falls at 12-mo follow-up. No irreversible adverse side effects were observed. CONCLUSION Our findings suggest that combined unilateral STN and contralateral GPi DBS could offer an effective and well-tolerated DBS treatment for certain PD patients.


Neurology ◽  
2016 ◽  
Vol 88 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Jill L. Ostrem ◽  
Marta San Luciano ◽  
Kristen A. Dodenhoff ◽  
Nathan Ziman ◽  
Leslie C. Markun ◽  
...  

Objective:To report long-term safety and efficacy outcomes of a large cohort of patients with medically refractory isolated dystonia treated with subthalamic nucleus (STN) deep brain stimulation (DBS).Methods:Twenty patients (12 male, 8 female; mean age 49 ± 16.3 years) with medically refractory isolated dystonia were studied (14 were followed for 36 months). The primary endpoints were change in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor score and Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) total score at 36 months compared to preoperative baseline. Multiple secondary outcomes were also assessed (ClinicalTrials.govNCT00773604).Results:Eighteen of 20 patients showed improvement 12 months after STN DBS with sustained benefit persisting for 3 years (n = 14). At 36 months, BFMDRS motor scores improved 70.4% from a mean 17.9 ± 8.5 to 5.3 ± 5.6 (p = 0.0002) and total TWSTRS scores improved 66.6% from a mean 41.0 ± 18.9 to 13.7 ± 17.9 (p = 0.0002). Improvement at 36 months was equivalent to that seen at 6 months. Disability and quality of life measures were also improved. Three hardware-related and 24 stimulation-related nonserious adverse events occurred between years 1 and 3 (including 4 patients with dyskinesia).Conclusions:This study offers support for long-term tolerability and sustained effectiveness of STN DBS in the treatment of severe forms of isolated dystonia.Classification of evidence:This study provides Class IV evidence that STN DBS decreases long-term dystonia severity in patients with medically refractory isolated dystonia.


Sign in / Sign up

Export Citation Format

Share Document