Impact of sporting discipline, gender, ethnicity, and genetics on the athlete’s heart

Author(s):  
Nabeel Sheikh

Participation in regular exercise is associated with several electrical and structural cardiac adaptations collectively termed the ‘athlete’s heart’. The nature and extent of these changes are influenced by several demographic factors, including the sporting discipline, gender, and ethnicity of the athlete. Knowledge of these influences is crucial for the correct interpretation of data from pre-participation cardiac evaluation of athletes and prevention of erroneous diagnoses. The greatest adaptations are usually observed in male athletes, those competing in endurance exercise, and those of African/Afro-Caribbean (black) ethnicity. In particular, much attention has recently been given to cardiac remodelling in black athletes, a significant proportion of whom exhibit profound electrical and structural cardiac changes in response to exercise. Data on the influence of genetic factors on the athlete’s heart are now emerging, which may aid our understanding of the complex mechanisms underlying this process and ultimately help differentiation of normal physiology from cardiac pathology.

2022 ◽  
Vol 8 ◽  
Author(s):  
Tee Joo Yeo ◽  
Mingchang Wang ◽  
Robert Grignani ◽  
James McKinney ◽  
Lay Pheng Koh ◽  
...  

Background: Asian representation in sport is increasing, yet there remains a lack of reference values for the Asian athlete's heart. Consequently, current guidelines for cardiovascular screening recommend using Caucasian athletes' norms to evaluate Asian athletes. This study aims to outline electrocardiographic and echocardiographic characteristics of the Asian athlete's heart using a Singaporean prospective registry of Southeast (SE) Asian athletes.Methods and Results: One hundred and fifty elite athletes, mean age of 26.1 ± 5.7 years (50% males, 88% Chinese), were evaluated using a questionnaire, 12-lead electrocardiogram (ECG) and transthoracic echocardiogram. All ECGs were analyzed using the 2017 International Recommendations. Echocardiographic data were presented by gender and sporting discipline. The prevalence of abnormal ECGs among SE Asian athletes was 6.7%—higher than reported figures for Caucasian athletes. The abnormal ECGs comprised mainly anterior T wave inversions (ATWI) beyond lead V2, predominantly in female athletes from mixed/endurance sport (9.3% prevalence amongst females). None had echocardiographic structural abnormalities. Male athletes had reduced global longitudinal strain compared to females (−18.7 ± 1.6 vs. −20.7 ± 2.1%, p < 0.001). Overall, SE Asian athletes had smaller left ventricular cavity sizes and wall thickness compared to non-Asian athletes.Conclusion: SE Asian athletes have higher abnormal ECG rates compared to Caucasian athletes, and also demonstrate structural differences that should be accounted for when interpreting their echocardiograms compared to athletes of other ethnicities.


2017 ◽  
Vol 52 (4) ◽  
pp. 230-230 ◽  
Author(s):  
Gavin McClean ◽  
Nathan R Riding ◽  
Clare L Ardern ◽  
Abdulaziz Farooq ◽  
Guido E Pieles ◽  
...  

AimTo describe the electrocardiographic (ECG) and echocardiographic manifestations of the paediatric athlete’s heart, and examine the impact of age, race and sex on cardiac remodelling responses to competitive sport.DesignSystematic review with meta-analysis.Data sourcesSix electronic databases were searched to May 2016: MEDLINE, PubMed, EMBASE, Web of Science, CINAHL and SPORTDiscus.Inclusion criteria(1) Male and/or female competitive athletes, (2) participants aged 6–18 years, (3) original research article published in English language.ResultsData from 14 278 athletes and 1668 non-athletes were included for qualitative (43 articles) and quantitative synthesis (40 articles). Paediatric athletes demonstrated a greater prevalence of training-related and training-unrelated ECG changes than non-athletes. Athletes ≥14 years were 15.8 times more likely to have inferolateral T-wave inversion than athletes <14 years. Paediatric black athletes had significantly more training-related and training-unrelated ECG changes than Caucasian athletes. Age was a positive predictor of left ventricular (LV) internal diameter during diastole, interventricular septum thickness during diastole, relative wall thickness and LV mass. When age was accounted for, these parameters remained significantly larger in athletes than non-athletes. Paediatric black athletes presented larger posterior wall thickness during diastole (PWTd) than Caucasian athletes. Paediatric male athletes also presented larger PWTd than females.ConclusionsThe paediatric athlete’s heart undergoes significant remodelling both before and during ‘maturational years’. Paediatric athletes have a greater prevalence of training related and training-unrelated ECG changes than non-athletes, with age, race and sex mediating factors on cardiac electrical and LV structural remodelling.


Circulation ◽  
2001 ◽  
Vol 103 (6) ◽  
Author(s):  
Robert H. Fagard

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kaspar Broch ◽  
Stefano deMarchi ◽  
Richard Massey ◽  
Svend Aakhus ◽  
Lars Gullestad ◽  
...  

Introduction: Elite endurance athletes often develop left ventricular dilatation comparable to that observed in aortic regurgitation (AR). Hypothesis: We hypothesized that the LV remodeling observed in athlete’s heart differs from that seen in AR, and that the difference may be attributed to different fiber stress distribution. Methods: Thirty asymptomatic patients with moderate to severe AR, 15 age matched elite endurance athletes (Athl) and 17 age matched healthy controls (C) where analyzed with 3D speckle tracking echocardiography. We calculated the ratio between peak systolic circumferential (CS) - and peak systolic longitudinal strain (LS) and end-systolic (ES) circumferential (ESSc) and meridional (ESSm) fiber stress. Results: LV ejection fraction in C, Athl and AR patients was (61 ± 2, 61 ± 3 and 62 ± 3%, respectively, p=NS). LV end-diastolic volume was 78 ± 11, 112 ± 13 and 117 ± 20 ml/m 2 in C, Athl and AR, respectively, (C vs AR and Athl, p<0.01, AR vs Athl, p=NS). A non-uniform contraction pattern with a rightward shift of the LS strain curve was observed in AR (Figure 1). The CS/LS ratio was 0.91 ± 0.11, 0.91 ± 0.16 and 1.12 ± 0.24 in C, Athl and AR, respectively, (AR vs C and Athl, p<0.01, C vs Athl, p=NS). Consistently, the ESSc/ESSm ratio was similar in C and Athl (1.75 ± 0.08 and 1.74 ± 0.07, respectively, p=NS) and lower in AR patients (1.67 ± 0.07, AR vs C and Athl, p<0.01), indicating a relative increase in meridional fiber stress in the AR group (Figure 2). Conclusions: We have demonstrated that LV remodeling in AR patients differs from athlete’s heart with similar LV volumes, and may be attributed to a shift in the circumferential-meridional fiber stress ratio in AR patients.


Sign in / Sign up

Export Citation Format

Share Document