scholarly journals Electrical and structural adaptations of the paediatric athlete’s heart: a systematic review with meta-analysis

2017 ◽  
Vol 52 (4) ◽  
pp. 230-230 ◽  
Author(s):  
Gavin McClean ◽  
Nathan R Riding ◽  
Clare L Ardern ◽  
Abdulaziz Farooq ◽  
Guido E Pieles ◽  
...  

AimTo describe the electrocardiographic (ECG) and echocardiographic manifestations of the paediatric athlete’s heart, and examine the impact of age, race and sex on cardiac remodelling responses to competitive sport.DesignSystematic review with meta-analysis.Data sourcesSix electronic databases were searched to May 2016: MEDLINE, PubMed, EMBASE, Web of Science, CINAHL and SPORTDiscus.Inclusion criteria(1) Male and/or female competitive athletes, (2) participants aged 6–18 years, (3) original research article published in English language.ResultsData from 14 278 athletes and 1668 non-athletes were included for qualitative (43 articles) and quantitative synthesis (40 articles). Paediatric athletes demonstrated a greater prevalence of training-related and training-unrelated ECG changes than non-athletes. Athletes ≥14 years were 15.8 times more likely to have inferolateral T-wave inversion than athletes <14 years. Paediatric black athletes had significantly more training-related and training-unrelated ECG changes than Caucasian athletes. Age was a positive predictor of left ventricular (LV) internal diameter during diastole, interventricular septum thickness during diastole, relative wall thickness and LV mass. When age was accounted for, these parameters remained significantly larger in athletes than non-athletes. Paediatric black athletes presented larger posterior wall thickness during diastole (PWTd) than Caucasian athletes. Paediatric male athletes also presented larger PWTd than females.ConclusionsThe paediatric athlete’s heart undergoes significant remodelling both before and during ‘maturational years’. Paediatric athletes have a greater prevalence of training related and training-unrelated ECG changes than non-athletes, with age, race and sex mediating factors on cardiac electrical and LV structural remodelling.

2017 ◽  
Vol 52 (10) ◽  
pp. 667-673 ◽  
Author(s):  
Alessandro Zorzi ◽  
Chiara Calore ◽  
Riccardo Vio ◽  
Antonio Pelliccia ◽  
Domenico Corrado

BackgroundInterpretation of the athlete’s ECG is based on differentiation between benign ECG changes and potentially pathological abnormalities. The aim of the study was to compare the 2010 European Society of Cardiology (ESC) and the 2017 International criteria for differential diagnosis between hypertrophic cardiomyopathy (HCM) and athlete’s heart.MethodsThe study populations included 200 patients with HCM and 563 athletes grouped as follows: ‘group 1’, including normal ECG and isolated increase of QRS voltages, which are considered non-pathologic according to ESC and International criteria; ‘group 2’, including left atrial enlargement or left axis deviation in isolation and Q-waves with an amplitude ≥4 mm but <25% of the ensuing R-wave and a duration <0.04 s which are considered pathologic according to the ESC but not according to the International criteria; and ‘group 3’, including abnormalities which are considered pathologic according to ESC and International criteria.ResultsOverall, the 2010 ESC criteria showed a sensitivity of 95.5% and a specificity of 86.9%. Considering group 2 ECG changes as normal according to the International criteria led to a statistically significant (p<0.001) increase of specificity to 95.9%, associated with a non-significant (p=0.47) reduction of sensitivity to 93%. Among patients with HCM, there was a significant increase of maximal left ventricular wall thickness from group 1 to 3 (p=0.02).ConclusionsThe use of 2017 International criteria is associated with a substantial increase in specificity and a marginal decrease in sensitivity for differential diagnosis between HCM and athlete’s heart.


2020 ◽  
pp. 204748732091185 ◽  
Author(s):  
Flavio D’Ascenzi ◽  
Caterina Fiorentini ◽  
Francesca Anselmi ◽  
Sergio Mondillo

Athlete’s heart is typically accompanied by a remodelling of the cardiac chambers induced by exercise. However, although competitive athletes are commonly considered healthy, they can be affected by cardiac disorders characterised by an increase in left ventricular mass and wall thickness, such as hypertension. Unfortunately, training-induced increase in left ventricular mass, wall thickness, and atrial and ventricular dilatation observed in competitive athletes may mimic the pathological remodelling of pathological hypertrophy. As a consequence, distinguishing between athlete’s heart and hypertension can sometimes be challenging. The present review aimed to focus on the differential diagnosis between hypertensive heart disease and athlete’s heart, providing clinical information useful to distinguish between physiological and pathological remodelling.


Heart ◽  
2013 ◽  
Vol 99 (23) ◽  
pp. 1727-1733 ◽  
Author(s):  
Victor Utomi ◽  
David Oxborough ◽  
Greg P Whyte ◽  
John Somauroo ◽  
Sanjay Sharma ◽  
...  

2020 ◽  
pp. 204748732092131
Author(s):  
Anders W Bjerring ◽  
Hege EW Landgraff ◽  
Svein Leirstein ◽  
Kristina H Haugaa ◽  
Thor Edvardsen ◽  
...  

Background Adult athletes undergo cardiac adaptions in what is known as the “athlete’s heart”. Cardiac adaptations in young athletes have not been described in longitudinal studies but have previously been believed to be uniform in nature. Methods Seventy-six cross-country skiers were assessed at age 12. Forty-eight (63%) completed the first follow-up at age 15 and 36 (47%) the second follow-up at age 18. Comprehensive exercise data were collected. Echocardiography with three-dimensional measurements and cardiopulmonary exercise testing were performed at all time points. The cohort was divided into active and former endurance athletes, with an eight hours of weekly endurance exercise cut-off at age 18. Results The athletes underwent eccentric remodelling between ages 12 and 15, and concentric remodelling between ages 15 and 18. At age 18, the active endurance athletes had greater increases in inter-ventricular wall thickness (1.8 ± 1.4 Δmm vs 0.6 ± 1.0 Δmm, p < 0.05), left ventricular (LV) posterior wall thickness (1.6 ± 1.2 Δmm vs 0.8 ± 0.8 Δmm, p < 0.05), LV mass (63 ± 30 Δg vs 27 ± 21 Δg, p < 0.01), right ventricular (RV) end-diastolic area (3.4 ± 4.0 Δcm2 vs 0.6 ± 3.5Δ cm2, p < 0.05), RV end-systolic area (1.0 ± 2.3 Δcm2 vs –0.9 ± 2.0 Δcm2, p < 0.05) and left atrial volume (24 ± 21 ΔmL vs 6±10 ΔmL, p < 0.05) and had greater indexed maximal oxygen uptake (66.3 ± 7.4 mL/min/kg vs 57.1 ± 8.2 mL/min/kg, p < 0.01). There was no significant difference for LV volumes. Conclusion This study finds a shift in the development of the young athlete’s heart. Between ages 12 and 15, the active endurance athletes underwent eccentric remodelling. This dynamic switched to concentric remodelling between ages 15 and 18.


2018 ◽  
Vol 51 (2) ◽  
pp. 949-960 ◽  
Author(s):  
Bo Pang ◽  
Fei Zhao ◽  
Yang Zhou ◽  
Bin He ◽  
Wei Huang ◽  
...  

Background/Aims: Patients with myocardial infarction and hypoxemia require supplemental oxygen. However, the current therapeutic paradigm is contradicted by several recent studies in which the post-infarcted heart appears to benefit from systemic hypoxia. With this systematic review and meta-analysis, we aimed to discover whether systemic hypoxia is beneficial or detrimental to the infarcted myocardium. Methods: We conducted an electronic search of the PubMed, EMBASE, and Web of Science databases and extracted the outcomes of cardiac function, geometry, and hemodynamics. A random-effect model was applied when the I2 value of greater than 50%. The sensitivity analysis was performed by omitting one study at a time, and publication bias was assessed using Egger’s test. In addition, the quality of studies was evaluated using the risk of bias tool devised by the Systematic Review Centre for Laboratory Animal Experimentation. Results: Six reports comprising 14 experiments were ultimately screened from among 10,323 initially identified preclinical studies. Few studies reported the method of randomization and none described allocation concealment, random outcome assessment or blinding. Overall, chronic hypoxia was found to have a beneficial effect on the ejection fraction (standard mean difference [SMD] = 5.39; 95% confidence interval [CI], 3.83 to 6.95; P < 0.001) of the infarcted heart, whereas acute hypoxia significantly improved hemodynamics, as indicated by an increase in the maximal rate of rise of left ventricular pressure (SMD = 1.27; 95% CI, 0.27 to 2.28; P = 0.013) and cardiac output (SMD = 1.26; 95% CI, 0.34 to 2.18; P = 0.007) and a decrease in total systematic vascular resistance (SMD = –0.89; 95% CI, –1.24 to –0.53; P < 0.001). Furthermore, a reduced oxygen content increased the stroke volume (P = 0.010). However, hypoxia reduced the end-systolic (SMD = –2.67; 95% CI, –4.09 to –1.26; P < 0.001) and end-diastolic (SMD = –3.61; 95% CI, –4.65 to –2.57; P < 0.001) left ventricular diameters and increased the total pulmonary resistance (SMD = 0.76; 95% CI, 0.20 to 1.33; P = 0.008), pulmonary arterial mean pressure (SMD = 2.02; 95% CI, 0.23 to 3.81; P = 0.027), and left atrial pressure (SMD = 1.20; 95% CI, 0.57 to 1.82; P < 0.001). Conclusion: Hypoxia significantly improved heart function after infarction, with particular beneficial effects on systolic function and hemodynamics. However, it had slightly adverse effects on pulmonary circulation and left ventricular geometry. A lower inspired oxygen concentration may improve cardiac function, although further research is needed to determine the optimum level of hypoxia. Finally, more studies of hypoxia and myocardial infarction in larger species are required before these findings can be incorporated into therapeutic guidelines.


ESC CardioMed ◽  
2018 ◽  
pp. 2916-2920
Author(s):  
Alessandro Zorzi ◽  
Domenico Corrado

The electrocardiogram (ECG) of trained athletes may show changes that represent the consequence of the heart’s adaptation to physical exercise (‘athlete’s heart’) such as enlarged cardiac chamber size and increased vagal tone. Physiological ECG changes must be differentiated from the ECG abnormalities secondary to an underlying cardiovascular disease that may be responsible for sudden cardiac death during exercise. The ECG changes of athletes are classified according to their prevalence, relation to exercise training, association with an increased risk of cardiovascular disease, and the need for further investigations: common ECG changes should be considered as a benign sign of physiological adaptation to exercise and do not require additional evaluation; on the other hand, in case of uncommon and training-unrelated abnormalities, which may be associated with an underlying cardiovascular disease, further work-up should be performed. This chapter reviews the abnormalities that may be found in an athlete’s ECG and proposes criteria for interpretation of such changes as normal or abnormal findings.


Sign in / Sign up

Export Citation Format

Share Document