scholarly journals Stellar populations and large-scale structure of the SMC – II. Geometry of the north-eastern and south-western outlying regions

1989 ◽  
Vol 241 (4) ◽  
pp. 667-690 ◽  
Author(s):  
D. Hatzidimitriou ◽  
M. R. S. Hawkins
1988 ◽  
Vol 130 ◽  
pp. 543-543
Author(s):  
David J. Batuski ◽  
Jack O. Burns ◽  
Adrian Melott

In a continuing redshift observation program, we have recently determined or confirmed the redshifts of 32 R ≥ 0 Abell clusters. With these data added to the previously measured cluster redshifts, there is now a sample of Abell clusters to z = 0.085 that is 92% complete in redshift measurements. The sample consists of 225 clusters in the North and South Galactic Caps, with latitude |b| > 30° to minimize obscuration effects. The longitude range 270° < l < 360° was also excluded for this sample because of an apparent large spur of galactic absorption.


Author(s):  
Masao Hayashi ◽  
Yusei Koyama ◽  
Tadayuki Kodama ◽  
Yutaka Komiyama ◽  
Yen-Ting Lin ◽  
...  

Abstract We present the large-scale structure over a more than 50 comoving Mpc scale at $z \sim 0.9$ where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with the Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total via follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure known as the CL1604 supercluster is the tip of the iceberg. We investigate the stellar population of the red-sequence galaxies using 4000 Å break and Balmer H$\delta$ absorption lines. Almost all of the red-sequence galaxies brighter than $21.5\:$mag in the z band show an old stellar population of $\gtrsim\! 2\:$Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have a similar stellar population age, even if they are located $\sim\! 50\:$Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure on a 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.


2017 ◽  
Vol 145 (10) ◽  
pp. 4227-4247 ◽  
Author(s):  
Melanie R. Fewings

The wind that drives oceanic eastern boundary upwelling systems is highly variable. In many locations, the standard deviation of wind velocity on time scales of days to weeks is larger than the mean. In the ~1600-km-long California Current System (CCS), the spatial decorrelation scale of the wind fluctuations is ~400–800 km, suggesting wind fluctuations in the north and south ends of the system are not related. Yet, there is also the suggestion in the literature of a larger-scale structure in the fluctuations. Here, empirical orthogonal function (EOF) analysis of buoy and satellite wind velocities confirms the existence of that structure. This analysis covers a larger spatial domain than previous EOF studies in the CCS and, to allow for propagation of the wind fluctuations, includes an approach for calculating Hilbert EOFs from time series with gaps. The large-scale structure in the wind fluctuations is a quasi-dipole pattern spanning the coastline from Washington through California. It accounts for ~60% of the wind velocity variance on time scales of days to weeks. The time-mean wind velocity, showing a continuous zone of intensified wind along the coast, is deceptive. When the northern half of the CCS is in a relaxation state, the southern half often experiences intensified winds, and vice versa. There should be a resulting out-of-phase structure in oceanic upwelling. The out-of-phase wind fluctuations in the north and south parts of the CCS may affect the forcing of oceanic coastal-trapped waves, mesoscale eddy generation at capes, and offshore export of carbon.


2015 ◽  
Vol 451 (3) ◽  
pp. 3249-3268 ◽  
Author(s):  
Mehmet Alpaslan ◽  
Simon Driver ◽  
Aaron S. G. Robotham ◽  
Danail Obreschkow ◽  
Ellen Andrae ◽  
...  

1989 ◽  
Vol 241 (4) ◽  
pp. 645-666 ◽  
Author(s):  
D. Hatzidimitriou ◽  
M. R. S. Hawkins ◽  
K. Gyldenkerne

2014 ◽  
Vol 59 (1) ◽  
pp. 79-92
Author(s):  
Alexander Becker

Wie erlebt der Hörer Jazz? Bei dieser Frage geht es unter anderem um die Art und Weise, wie Jazz die Zeit des Hörens gestaltet. Ein an klassischer Musik geschultes Ohr erwartet von musikalischer Zeitgestaltung, den zeitlichen Rahmen, der durch Anfang und Ende gesetzt ist, von innen heraus zu strukturieren und neu zu konstituieren. Doch das ist keine Erwartung, die dem Jazz gerecht wird. Im Jazz wird der Moment nicht im Hinblick auf ein Ziel gestaltet, das von einer übergeordneten Struktur bereitgestellt wird, sondern so, dass er den Bewegungsimpuls zum nächsten Moment weiterträgt. Wie wirkt sich dieses Prinzip der Zeitgestaltung auf die musikalische Form im Großen aus? Der Aufsatz untersucht diese Frage anhand von Beispielen, an denen sich der Weg der Transformation von einer klassischen zu einer dem Jazz angemessenen Form gut nachverfolgen lässt.<br><br>How do listeners experience Jazz? This is a question also about how Jazz music organizes the listening time. A classically educated listener expects a piece of music to structure, unify and thereby re-constitute the externally given time frame. Such an expectation is foreign to Jazz music which doesn’t relate the moment to a goal provided by a large scale structure. Rather, one moment is carried on to the next, preserving the stimulus potentially ad infinitum. How does such an organization of time affect the large scale form? The paper tries to answer this question by analyzing two examples which permit to trace the transformation of a classical form into a form germane to Jazz music.


Sign in / Sign up

Export Citation Format

Share Document