scholarly journals Large-Scale Structure in Wind Forcing over the California Current System in Summer

2017 ◽  
Vol 145 (10) ◽  
pp. 4227-4247 ◽  
Author(s):  
Melanie R. Fewings

The wind that drives oceanic eastern boundary upwelling systems is highly variable. In many locations, the standard deviation of wind velocity on time scales of days to weeks is larger than the mean. In the ~1600-km-long California Current System (CCS), the spatial decorrelation scale of the wind fluctuations is ~400–800 km, suggesting wind fluctuations in the north and south ends of the system are not related. Yet, there is also the suggestion in the literature of a larger-scale structure in the fluctuations. Here, empirical orthogonal function (EOF) analysis of buoy and satellite wind velocities confirms the existence of that structure. This analysis covers a larger spatial domain than previous EOF studies in the CCS and, to allow for propagation of the wind fluctuations, includes an approach for calculating Hilbert EOFs from time series with gaps. The large-scale structure in the wind fluctuations is a quasi-dipole pattern spanning the coastline from Washington through California. It accounts for ~60% of the wind velocity variance on time scales of days to weeks. The time-mean wind velocity, showing a continuous zone of intensified wind along the coast, is deceptive. When the northern half of the CCS is in a relaxation state, the southern half often experiences intensified winds, and vice versa. There should be a resulting out-of-phase structure in oceanic upwelling. The out-of-phase wind fluctuations in the north and south parts of the CCS may affect the forcing of oceanic coastal-trapped waves, mesoscale eddy generation at capes, and offshore export of carbon.

1988 ◽  
Vol 130 ◽  
pp. 543-543
Author(s):  
David J. Batuski ◽  
Jack O. Burns ◽  
Adrian Melott

In a continuing redshift observation program, we have recently determined or confirmed the redshifts of 32 R ≥ 0 Abell clusters. With these data added to the previously measured cluster redshifts, there is now a sample of Abell clusters to z = 0.085 that is 92% complete in redshift measurements. The sample consists of 225 clusters in the North and South Galactic Caps, with latitude |b| > 30° to minimize obscuration effects. The longitude range 270° < l < 360° was also excluded for this sample because of an apparent large spur of galactic absorption.


2005 ◽  
Vol 35 (8) ◽  
pp. 1421-1436 ◽  
Author(s):  
Niklas Schneider ◽  
Emanuele Di Lorenzo ◽  
Pearn P. Niiler

Abstract Hydrographic observations southwestward of the Southern California Bight in the period 1937–99 show that temperature and salinity variations have very different interannual variability. Temperature varies within and above the thermocline and is correlated with climate indices of El Niño, the Pacific decadal oscillation, and local upwelling. Salinity variability is largest in the surface layers of the offshore salinity minimum and is characterized by decadal-time-scale changes. The salinity anomalies are independent of temperature, of heave of the pycnocline, and of the climate indices. Calculations demonstrate that long-shore anomalous geostrophic advection of the mean salinity gradient accumulates along the mean southward trajectory along the California Current and produces the observed salinity variations. The flow anomalies for this advective process are independent of large-scale climate indices. It is hypothesized that low-frequency variability of the California Current system results from unresolved, small-scale atmospheric forcing or from the ocean mesoscale upstream of the Southern California Bight.


2019 ◽  
Vol 15 (6) ◽  
pp. 1985-1998
Author(s):  
Anson Cheung ◽  
Baylor Fox-Kemper ◽  
Timothy Herbert

Abstract. Marine sediments have greatly improved our understanding of the climate system, but their interpretation often assumes that certain climate mechanisms operate consistently over all timescales of interest and that variability at one or a few sample sites is representative of an oceanographic province. In this study, we test these assumptions using modern observations in an idealized manner mimicking paleo-reconstruction to investigate whether sea surface temperature and productivity proxy records in the Southern California Current System can be used to reconstruct Ekman upwelling. The method uses extended empirical orthogonal function (EEOF) analysis of the covariation of alongshore wind stress, chlorophyll, and sea surface temperature as measured by satellites from 2002 to 2009. We find that EEOF1 does not reflect an Ekman upwelling pattern but instead much broader California Current processes. EEOF2 and 3 reflect upwelling patterns, but these patterns are timescale dependent and regional. Thus, the skill of using one site to reconstruct the large-scale dominant patterns is spatially dependent. Lastly, we show that using multiple sites and/or multiple variables generally improves field reconstruction. These results together suggest that caution is needed when attempting to extrapolate mechanisms that may be important on seasonal timescales (e.g., Ekman upwelling) to deeper time but also the advantage of having multiple proxy records.


Harmful Algae ◽  
2015 ◽  
Vol 44 ◽  
pp. 63
Author(s):  
Angelicque E. White ◽  
Katie S. Watkins-Brandt ◽  
S. Morgaine McKibben ◽  
A. Michelle Wood ◽  
Matthew Hunter ◽  
...  

Author(s):  
Masao Hayashi ◽  
Yusei Koyama ◽  
Tadayuki Kodama ◽  
Yutaka Komiyama ◽  
Yen-Ting Lin ◽  
...  

Abstract We present the large-scale structure over a more than 50 comoving Mpc scale at $z \sim 0.9$ where the CL1604 supercluster, which is one of the largest structures ever known at high redshifts, is embedded. The wide-field deep imaging survey by the Subaru Strategic Program with the Hyper Suprime-Cam reveals that the already-known CL1604 supercluster is a mere part of larger-scale structure extending to both the north and the south. We confirm that there are galaxy clusters at three slightly different redshifts in the northern and southern sides of the supercluster by determining the redshifts of 55 red-sequence galaxies and 82 star-forming galaxies in total via follow-up spectroscopy with Subaru/FOCAS and Gemini-N/GMOS. This suggests that the structure known as the CL1604 supercluster is the tip of the iceberg. We investigate the stellar population of the red-sequence galaxies using 4000 Å break and Balmer H$\delta$ absorption lines. Almost all of the red-sequence galaxies brighter than $21.5\:$mag in the z band show an old stellar population of $\gtrsim\! 2\:$Gyr. The comparison of composite spectra of the red-sequence galaxies in the individual clusters show that the galaxies at a similar redshift have a similar stellar population age, even if they are located $\sim\! 50\:$Mpc apart from each other. However, there could be a large variation in the star formation history. Therefore, it is likely that galaxies associated with the large-scale structure on a 50 Mpc scale formed at almost the same time, have assembled into the denser regions, and then have evolved with different star formation history along the hierarchical growth of the cosmic web.


Harmful Algae ◽  
2014 ◽  
Vol 37 ◽  
pp. 38-46 ◽  
Author(s):  
Angelicque E. White ◽  
Katie S. Watkins-Brandt ◽  
S. Morgaine McKibben ◽  
A. Michelle Wood ◽  
Matthew Hunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document