scholarly journals Central Compact Objects in Supernova Remnants

2004 ◽  
Vol 218 ◽  
pp. 239-246 ◽  
Author(s):  
George G. Pavlov ◽  
Divas Sanwal ◽  
Marcus A. Teter

There are point-like sources in central regions of several supernova remnants which have not been detected outside the X-ray range. The X-ray spectra of these Central Compact Objects (CCOs) have thermal components with blackbody temperatures of 0.2–0.5 keV and characteristic sizes of 0.3-3 km. Most likely, the CCOs are neutron stars born in supernova explosions. We overview their observational properties, emphasizing the Chandra data, and compare them with magnetars.

2012 ◽  
Vol 8 (S291) ◽  
pp. 101-106 ◽  
Author(s):  
Wynn C. G. Ho

AbstractCentral compact objects (CCOs) are neutron stars that are found near the center of supernova remnants, and their association with supernova remnants indicates these neutron stars are young (≲ 104 yr). Here we review the observational properties of CCOs and discuss implications, especially their inferred magnetic fields. X-ray timing and spectral measurements suggest CCOs have relatively weak surface magnetic fields (~ 1010 − 1011 G). We argue that, rather than being created with intrinsically weak fields, CCOs are born with strong fields and we are only seeing a weak surface field that is transitory and evolving. This could imply that CCOs are one manifestation in a unified picture of neutron stars.


2004 ◽  
Vol 218 ◽  
pp. 277-278 ◽  
Author(s):  
Estela M. Reynoso ◽  
Simon Johnston ◽  
Anne J. Green ◽  
W. M. Goss ◽  
Gloria M. Dubner ◽  
...  

We have carried out an H I survey towards X-ray central compact objects (CCOs) inside supernova remnants (SNRs), which shows that many of them are placed within local H I minimA. The nature of these minima is not clear, but the most likely explanation is that the CCOs have evacuated the neighboring gas. This survey also allowed us to detect a weak, diffuse radio nebula inside the SNR G266.2−1.2, probably created by the winds of its associated CCO.


2020 ◽  
Vol 495 (2) ◽  
pp. 1692-1699 ◽  
Author(s):  
Konstantinos N Gourgouliatos ◽  
Rainer Hollerbach ◽  
Andrei P Igoshev

ABSTRACT Central Compact Objects (CCOs) are X-ray sources with luminosity ranging between 1032 and 1034 erg s−1, located at the centres of supernova remnants. Some of them have been confirmed to be neutron stars. Timing observations have allowed the estimation of their dipole magnetic field, placing them in the range ∼1010–1011 G. The decay of their weak dipole fields, mediated by the Hall effect and Ohmic dissipation, cannot provide sufficient thermal energy to power their X-ray luminosity, as opposed to magnetars whose X-ray luminosities are comparable. Motivated by the question of producing high X-ray power through magnetic field decay while maintaining a weak dipole field, we explore the evolution of a crustal magnetic field that does not consist of an ordered axisymmetric structure, but rather comprises a tangled configuration. This can be the outcome of a non-self-excited dynamo, buried inside the crust by fallback material following the supernova explosion. We find that such initial conditions lead to the emergence of the magnetic field from the surface of the star and the formation of a dipolar magnetic field component. An internal tangled magnetic field of the order of 1014 G can provide sufficient Ohmic heating to the crust and power CCOs, while the dipole field it forms is approximately 1010 G, as observed in CCOs.


2021 ◽  
Vol 21 (11) ◽  
pp. 294
Author(s):  
Qi Wu ◽  
Adriana M. Pires ◽  
Axel Schwope ◽  
Guang-Cheng Xiao ◽  
Shu-Ping Yan ◽  
...  

Abstract Most young neutron stars belonging to the class of Central Compact Objects (CCOs) in supernova remnants do not have known periodicities. We investigated seven such CCOs to understand the common reasons for the absence of detected pulsations. Making use of XMM-Newton, Chandra, and NICER observations, we perform a systematic timing and spectral analysis to derive updated sensitivity limits for both periodic signals and multi-temperature spectral components that could be associated with radiation from hotspots on the neutron star surface. Based on these limits, we then investigated for each target the allowed viewing geometry that could explain the lack of pulsations. We find that it is unlikely (< 10−6) to attribute that we do not see pulsations to an unfavorable viewing geometry for five considered sources. Alternatively, the carbon atmosphere model, which assumes homogeneous temperature distribution on the surface, describes the spectra equally well and provides a reasonable interpretation for the absence of detected periodicities within current limits. The unusual properties of CCOs with respect to other young neutron stars could suggest a different evolutionary path, as that proposed for sources experiencing episodes of significant fallback accretion after the supernova event.


2004 ◽  
Vol 218 ◽  
pp. 97-104 ◽  
Author(s):  
Fernando Camilo

I review the results of radio and X-ray searches for pulsations from young neutron stars, emphasizing work accomplished in the last five years. I cover undirected searches, as well as directed searches of pulsar wind nebulae, EGRET γ-ray sources, and also the search for pulsations from “isolated neutron stars” and “central compact objects”.


2017 ◽  
Vol 13 (S337) ◽  
pp. 187-190 ◽  
Author(s):  
Paul S. Ray ◽  
Zaven Arzoumanian ◽  
Keith C. Gendreau ◽  

AbstractThe Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for exploring the modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute event time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for emission and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, low-mass X-ray binaries (LMXBs), accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission, including the discovery of pulsations from the millisecond pulsar J1231–1411.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


2021 ◽  
Vol 503 (2) ◽  
pp. 2973-2978
Author(s):  
G A Carvalho ◽  
S Pilling

ABSTRACT In this work, we analyse soft X-ray emission due to mass accretion on to compact stars and its effects on the time-scale to reach chemical equilibrium of eventual surrounding astrophysical ices exposed to that radiation. Reaction time-scales due to soft X-ray in water-rich and pure ices of methanol, acetone, acetonitrile, formic acid, and acetic acid were determined. For accretion rates in the range $\dot{m}=10^{-12}\!-\!10^{-8}\,{\rm M}_\odot$ yr−1 and distances in the range 1–3 LY from the central compact objects, the time-scales lie in the range 10–108 yr, with shorter time-scales corresponding to higher accretion rates. Obtained time-scales for ices at snow-line distances can be small when compared to the lifetime (or age) of the compact stars, showing that chemical equilibrium could have been achieved. Time-scales for ices to reach chemical equilibrium depend on X-ray flux and, hence, on accretion rate, which indicates that systems with low accretion rates may not have reached chemical equilibrium.


1971 ◽  
Vol 46 ◽  
pp. 394-406
Author(s):  
F. Pacini

The Crab Nebula pulsar conforms to the model of a rotating magnetised neutron star in the rate of energy generation and the exponent of the rotation law.It is suggested that the main pulse is due to electrons and the precursor to protons. Both must radiate in coherent bunches. Optical and X-ray radiation is by the synchrotron process.The wisps observed in the Nebula may represent the release of an instability storing about 1043 erg and 1047–48 particles.Finally, some considerations are made about the general relation between supernova remnants and rotating neutron stars.


Sign in / Sign up

Export Citation Format

Share Document