scholarly journals X-ray properties of G308.3-1.4 and its central compact object

2012 ◽  
Vol 8 (S291) ◽  
pp. 489-491
Author(s):  
K. A. Seo ◽  
C. Y. Hui ◽  
R. H. H. Huang ◽  
L. Trepl ◽  
T.-N. Lu ◽  
...  

AbstractWe present a short Chandra observation that confirms a previous unidentified extended X-ray source, G308.3-1.4, as a new supernova remnant (SNR) in the Milky Way. Apart from identifying its SNR nature, a bright X-ray point source has also been discovered at the geometrical center. Its X-ray spectral properties are similar to those of a particular class of neutron star known as central compact objects (CCOs). On the other hand, the optical properties of this counterpart suggests it to be a late-type star. Together with the interesting ~ 1.4 hours X-ray periodicity found by Chandra, this system can possibly provide the first direct evidence of a compact binary survived in a supernova explosion.

2020 ◽  
Vol 495 (2) ◽  
pp. 1692-1699 ◽  
Author(s):  
Konstantinos N Gourgouliatos ◽  
Rainer Hollerbach ◽  
Andrei P Igoshev

ABSTRACT Central Compact Objects (CCOs) are X-ray sources with luminosity ranging between 1032 and 1034 erg s−1, located at the centres of supernova remnants. Some of them have been confirmed to be neutron stars. Timing observations have allowed the estimation of their dipole magnetic field, placing them in the range ∼1010–1011 G. The decay of their weak dipole fields, mediated by the Hall effect and Ohmic dissipation, cannot provide sufficient thermal energy to power their X-ray luminosity, as opposed to magnetars whose X-ray luminosities are comparable. Motivated by the question of producing high X-ray power through magnetic field decay while maintaining a weak dipole field, we explore the evolution of a crustal magnetic field that does not consist of an ordered axisymmetric structure, but rather comprises a tangled configuration. This can be the outcome of a non-self-excited dynamo, buried inside the crust by fallback material following the supernova explosion. We find that such initial conditions lead to the emergence of the magnetic field from the surface of the star and the formation of a dipolar magnetic field component. An internal tangled magnetic field of the order of 1014 G can provide sufficient Ohmic heating to the crust and power CCOs, while the dipole field it forms is approximately 1010 G, as observed in CCOs.


2021 ◽  
Vol 503 (2) ◽  
pp. 2973-2978
Author(s):  
G A Carvalho ◽  
S Pilling

ABSTRACT In this work, we analyse soft X-ray emission due to mass accretion on to compact stars and its effects on the time-scale to reach chemical equilibrium of eventual surrounding astrophysical ices exposed to that radiation. Reaction time-scales due to soft X-ray in water-rich and pure ices of methanol, acetone, acetonitrile, formic acid, and acetic acid were determined. For accretion rates in the range $\dot{m}=10^{-12}\!-\!10^{-8}\,{\rm M}_\odot$ yr−1 and distances in the range 1–3 LY from the central compact objects, the time-scales lie in the range 10–108 yr, with shorter time-scales corresponding to higher accretion rates. Obtained time-scales for ices at snow-line distances can be small when compared to the lifetime (or age) of the compact stars, showing that chemical equilibrium could have been achieved. Time-scales for ices to reach chemical equilibrium depend on X-ray flux and, hence, on accretion rate, which indicates that systems with low accretion rates may not have reached chemical equilibrium.


1974 ◽  
Vol 64 ◽  
pp. 194-212
Author(s):  
M. J. Rees

The physics of spherically symmetrical accretion onto a compact object is briefly reviewed. Neither neutron stars nor stellar-mass black holes are likely to be readily detectable if they are isolated and accreting from the interstellar medium. Supermassive black holes in intergalactic space may however be detectable. The effects of accretion onto compact objects in binary systems are then discussed, with reference to the phenomena observed in variable X-ray sources.


1987 ◽  
Vol 92 ◽  
pp. 516-518
Author(s):  
Krishna M.V. Apparao ◽  
S.P. Tarafdar

Several Be stars are identified with bright X-ray sources. (Rappaport and Van den Heuvel, 1982). The bright X-ray emission and observed periodicities indicate the existence of compact objects (white dwarfs, neutron stars or black holes) near the Be stars. A prime example is the brightest X-ray source A0538-66 in LMC, which contains a neutron star with a rotation period of 59 ms. Apparao (1985) explained the X-ray emission, which occurs in periodic flares, by considering an inclined eccentric orbit for the neutron star around the assumed Be-star. The neutron star when it enters a gas ring (around the Be-star) accreting matter giving out X-rays.The X-ray emission from the compact objects, when the gas ring from the Be-star envelopes the objects, has interesting consequences. The X-ray emission produces an ionized region (compact object Stromgren sphere or COSS) in the gas surrounding the compact object (CO).


2012 ◽  
Vol 8 (S291) ◽  
pp. 101-106 ◽  
Author(s):  
Wynn C. G. Ho

AbstractCentral compact objects (CCOs) are neutron stars that are found near the center of supernova remnants, and their association with supernova remnants indicates these neutron stars are young (≲ 104 yr). Here we review the observational properties of CCOs and discuss implications, especially their inferred magnetic fields. X-ray timing and spectral measurements suggest CCOs have relatively weak surface magnetic fields (~ 1010 − 1011 G). We argue that, rather than being created with intrinsically weak fields, CCOs are born with strong fields and we are only seeing a weak surface field that is transitory and evolving. This could imply that CCOs are one manifestation in a unified picture of neutron stars.


2018 ◽  
Vol 14 (S346) ◽  
pp. 197-201
Author(s):  
Petr Kurfürst ◽  
Jiří Krtička

AbstractHigh-mass X-ray binaries belong to the brightest objects in the X-ray sky. They usually consist of a massive O or B star or a blue supergiant while the compact X-ray emitting component is a neutron star (NS) or a black hole. Intensive matter accretion onto the compact object can take place through different mechanisms: wind accretion, Roche-lobe overflow, or circumstellar disk. In our multi-dimensional models we perform numerical simulations of the accretion of matter onto a compact companion in case of Be/X-ray binaries. Using Bondi-Hoyle-Littleton approximation, we estimate the NS accretion rate. We determine the Be/X-ray binary disk hydrodynamic structure and compare its deviation from isolated Be stars’ disk. From the rate and morphology of the accretion flow and the X-ray luminosity we improve the estimate of the disk mass-loss rate. We also study the behavior of a binary system undergoing a supernova explosion, assuming a blue supergiant progenitor with an aspherical circumstellar environment.


2019 ◽  
Vol 489 (3) ◽  
pp. 4444-4463 ◽  
Author(s):  
C Braun ◽  
S Safi-Harb ◽  
C L Fryer

ABSTRACT We present a Chandra and XMM–Newton imaging and spectroscopic study of the supernova remnant (SNR) RCW 103 (G332.4−00.4) containing the central compact object 1E 161348−5055. The high-resolution Chandra X-ray images reveal enhanced emission in the south-eastern and north-western regions. Equivalent width line images of Fe L, Mg, Si, and S using XMM–Newton data were used to map the distribution of ejecta. The SNR was sectioned into 56 regions best characterized by two-component thermal models. The harder component (kT ∼ 0.6 keV) is adequately fitted by the VPSHOCK non-equilibrium ionization model with an ionization time-scale net ∼ 1011–1012 cm−3 s, and slightly enhanced abundances over solar values. The soft component (kT ∼ 0.2 keV), fitted by the APEC model, is well described by plasma in collisional ionization equilibrium with abundances consistent with solar values. Assuming a distance of 3.1 kpc and a Sedov phase of expansion into a uniform medium, we estimate an SNR age of 4.4 kyr, a swept-up mass Msw = 16$f_\mathrm{ s}^{-1/2}$ D$_{3.1}^{5/2}$ M⊙, and a low explosion energy E* = 3.7 × 1049 $f_\mathrm{ s}^{-1/2}$ D$_{3.1}^{5/2}$ erg. This energy could be an order of magnitude higher if we relax the Sedov assumption, the plasma has a low filling factor, the plasma temperature is underestimated, or if the SNR is expanding into the progenitor’s wind-blown bubble. Standard explosion models did not match the ejecta yields. By comparing the fitted abundances to the most recent core-collapse nucleosynthesis models, our best estimate yields a low-mass progenitor of around 12–13 M⊙, lower than previously reported. We discuss degeneracies in the model fitting, particularly the effect of altering the explosion energy on the progenitor mass estimate.


2006 ◽  
Vol 2 (S238) ◽  
pp. 43-48
Author(s):  
Jonay I. González Hernández ◽  
Rafael Rebolo ◽  
Garik Israelian

AbstractLow mass X-ray binaries (LMXBs) offer us an unique opportunity to study the formation processes of compact objects. Secondary stars orbiting around either a black hole or a neutron star could have captured a significant amount of the ejected matter in the supernova explosions that most likely originated the compact objects. The detailed chemical analysis of these companions can provide valuable information on the parameters involved in the supernova explosion such us the mass cut, the amount of fall-back matter, possible mixing processes, and the energy and the symmetry of the explosion. In addition, this analysis can help us to find out the birth place of the binary system. We have measured element abundances of secondary stars in the LMXBs A0620–00, Cen X-4, XTE J1118+480 and Nova Sco 94. We find solar or above solar metalicity for all these systems, what appears to be independent on their locations with respect to the Galactic plane. A comparison of the observed abundances with yields from different supernova explosion together with the kinematic properties of these systems suggest a supernova origin for the compact objects in all of them except for A0620–00, for which a direct collapse cannot be discarded.


2020 ◽  
Vol 493 (4) ◽  
pp. 5369-5381 ◽  
Author(s):  
Babis Politakis ◽  
Andreas Zezas ◽  
Jeff J Andrews ◽  
Stephen J Williams

ABSTRACT We analyse the vertical distribution of high-mass X-ray binaries (HMXBs) in NGC 55, the nearest edge-on galaxy to the Milky Way (MW), based on X-ray observations by Chandra. Adopting a statistical approach, we estimate the difference between the scale height of the vertical distribution of HMXBs and the vertical distribution of star-forming activity between 0.33 and 0.57 kpc. The spatial offsets can be explained by a momentum kick the X-ray binaries receive during the formation of the compact object after a supernova explosion of the primary star. Determining the vertical distribution of HMXBs in the MW using Gaia DR2 astrometry, we find that the corresponding difference is considerably lower at 0.036 ± 0.003 kpc, attributed to the greater gravitational potential of the MW. We also calculate the centre-of-mass transverse velocities of HMXBs in NGC 55, using traveltime information from binary population synthesis codes and for different star formation histories (SFHs). For a flat SFH model (typical of spiral galaxies like NGC 55), we find that HMXBs are moving with a typical transverse velocity between 34 and 48 km s−1, consistent with space velocities of MW HMXBs. For an exponentially declining SFH model, HMXBs are moving at a velocity of 21 km s−1, consistent with the corresponding velocity of HMXBs in the Small Magellanic Cloud and Large Magellanic Cloud. Finally, we estimate the formation efficiency of HMXBs in NGC 55 at 299$_{-46}^{+50}$ (systems/M⊙ yr−1), consistent within the errors with the Magellanic Clouds but significantly higher than the MW, a difference that can be explained by the subsolar metallicity of NGC 55.


2021 ◽  
Vol 503 (3) ◽  
pp. 3856-3866
Author(s):  
V V Gvaramadze ◽  
A Y Kniazev ◽  
J S Gallagher ◽  
L M Oskinova ◽  
Y-H Chu ◽  
...  

ABSTRACT We report the results of optical spectroscopy of the Small Magellanic Cloud supernova remnant (SNR) MCSNR J0127−7332 and the mass donor Be star, 2dFS 3831, in its associated high-mass X-ray binary SXP 1062 carried out with the Southern African Large Telescope. Using high-resolution long-slit spectra, we measured the expansion velocity of the SNR shell of ${\approx} 140 \, {\rm \, km\, s^{-1}}$, indicating that MCSNR J0127−7332 is in the radiative phase. We found that the observed line ratios in the SNR spectrum can be understood if the local interstellar medium is ionized by 2dFS 3831 and/or OB stars around the SNR. We propose that MCSNR J0127−7332 is the result of supernova explosion within a bubble produced by the stellar wind of the supernova progenitor and that the bubble was surrounded by a massive shell at the moment of supernova explosion. We estimated the age of MCSNR J0127−7332 to be ${\lesssim} 10\, 000$ yr. We found that the spectrum of 2dFS 3831 changes with orbital phase. Namely, the equivalent width of the H α emission line decreased by ≈40 per cent in ≈130 d after periastron passage of the neutron star and then almost returned to its original value in the next ≈100 d. Also, the spectrum of 2dFS 3831 obtained closest to the periastron epoch (about 3 weeks after the periastron) shows a noticeable emission line of He ii λ4686, which disappeared in the next 2 weeks. We interpret these changes as a result of the temporary perturbation and heating of the disc as the neutron star passes through it.


Sign in / Sign up

Export Citation Format

Share Document