scholarly journals Weak-lensing observables in relativistic N-body simulations

2020 ◽  
Vol 497 (2) ◽  
pp. 2078-2095 ◽  
Author(s):  
Francesca Lepori ◽  
Julian Adamek ◽  
Ruth Durrer ◽  
Chris Clarkson ◽  
Louis Coates

ABSTRACT We present a numerical weak-lensing analysis that is fully relativistic and non-perturbative for the scalar part of the gravitational potential and first order in the vector part, frame dragging. Integrating the photon geodesics backwards from the observer to the emitters, we solve the Sachs optical equations and study in detail the weak-lensing convergence, ellipticity and rotation. For the first time, we apply such an analysis to a high-resolution relativistic N-body simulation, which consistently includes the leading-order corrections due to general relativity on both large and small scales. These are related to the question of gauge choice and to post-Newtonian corrections, respectively. We present the angular power spectra and one-point probability distribution functions for the weak-lensing variables, which we find are broadly in agreement with comparable Newtonian simulations. Our geometric approach, however, is more robust and flexible, and can therefore be applied consistently to non-standard cosmologies and modified theories of gravity.

2016 ◽  
Vol 93 (10) ◽  
Author(s):  
Geraint Pratten ◽  
Dipak Munshi ◽  
Patrick Valageas ◽  
Philippe Brax

2016 ◽  
Vol 117 (9) ◽  
Author(s):  
Andrea Maselli ◽  
Stefania Marassi ◽  
Valeria Ferrari ◽  
Kostas Kokkotas ◽  
Raffaella Schneider

Author(s):  
Robin E Upham ◽  
Michael L Brown ◽  
Lee Whittaker

Abstract We investigate whether a Gaussian likelihood is sufficient to obtain accurate parameter constraints from a Euclid-like combined tomographic power spectrum analysis of weak lensing, galaxy clustering and their cross-correlation. Testing its performance on the full sky against the Wishart distribution, which is the exact likelihood under the assumption of Gaussian fields, we find that the Gaussian likelihood returns accurate parameter constraints. This accuracy is robust to the choices made in the likelihood analysis, including the choice of fiducial cosmology, the range of scales included, and the random noise level. We extend our results to the cut sky by evaluating the additional non-Gaussianity of the joint cut-sky likelihood in both its marginal distributions and dependence structure. We find that the cut-sky likelihood is more non-Gaussian than the full-sky likelihood, but at a level insufficient to introduce significant inaccuracy into parameter constraints obtained using the Gaussian likelihood. Our results should not be affected by the assumption of Gaussian fields, as this approximation only becomes inaccurate on small scales, which in turn corresponds to the limit in which any non-Gaussianity of the likelihood becomes negligible. We nevertheless compare against N-body weak lensing simulations and find no evidence of significant additional non-Gaussianity in the likelihood. Our results indicate that a Gaussian likelihood will be sufficient for robust parameter constraints with power spectra from Stage IV weak lensing surveys.


2018 ◽  
Vol 15 (supp01) ◽  
pp. 1850139 ◽  
Author(s):  
Yen Chin Ong

Torsion-based modified theories of gravity, such as [Formula: see text] gravity, are arguably one of the very few “true” modified gravities based on well-defined geometric structures. However, the original formulation explicitly works in a specific choice of frame, which has led to considerable amount of confusion in the literature about these theories breaking local Lorentz invariance. Pathological properties such as superluminal propagation and the lack of well-posedness of Cauchy problem were found to plague [Formula: see text] gravity. Recent effort to “covariantize” [Formula: see text] gravity has, however, renewed interests in this subject. In this proceeding paper, we review and discuss issues concerning the actual number of degrees of freedom in [Formula: see text] gravity, and how this might relate to the aforementioned pathologies.


Author(s):  
JE-AN GU

We discuss the stability of the general-relativity (GR) limit in modified theories of gravity, particularly the f(R) theory. The problem of approximating the higher-order differential equations in modified gravity with the Einstein equations (2nd-order differential equations) in GR is elaborated. We demonstrate this problem with a heuristic example involving a simple ordinary differential equation. With this example we further present the iteration method that may serve as a better approximation for solving the equation, meanwhile providing a criterion for assessing the validity of the approximation. We then discuss our previous numerical analyses of the early-time evolution of the cosmological perturbations in f(R) gravity, following the similar ideas demonstrated by the heuristic example. The results of the analyses indicated the possible instability of the GR limit that might make the GR approximation inaccurate in describing the evolution of the cosmological perturbations in the long run.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Viktor Toth ◽  
Jean-Pierre Luminet

Viktor Toth adds theoretical insights to the modified theories of gravity that aimed to solve the dark matter problem without necessitating the existence of hypothetic particles of nonbaryonic matter.


2021 ◽  
Vol 0 (1) ◽  
pp. 92-96
Author(s):  
R.KH. KARIMOV ◽  
◽  
K.K. NANDI ◽  

This paper investigates one of the most interesting effects associated with the rotation of astrophysical objects (the Sagnac effect). The effect was first confirmed in laboratory experiments by Georges Sagnac with a rotating ring interferometer in 1913. Later, the effect was also confirmed within the framework of the Earth in the "Around-the-World" experiment conducted by J. Hafele and R. Kitting, in which they twice circled the Earth with an atomic cesium clock on board and compared the "flying" clock with those remaining static on the Earth. As a result, a non-zero difference in the clock rate was found as a confirmation of the Sagnac effect. Subsequently, more precise satellite experiments have been carried out to measure the Sagnac effect within the Earth. The effect was also considered in general relativity and modified theories of gravity, where many works were carried out to study the influence of such parameters as angular momentum, cosmological constant, Ricci scalar, etc. on the Sagnac effect. An interesting task is to study the influence of a magnetic charge on the effect, since the solution with rotation described by a black hole with mass M and magnetic charge g is the Bardeen nonsingular black hole. The work will calculate the Sagnac effect in the space-time of the rotating Bardeen black hole for both geodesic and non-geodesic circular orbits of the light source / receiver (assuming that the light source and receiver are defined at the same point). Two types of circular orbits describe the opposing influence on the Sagnac effect: the Sagnac delay increases with an increase in the magnetic charge in the case of non-geodesic circular orbits and decreases in the case of geodesic circular orbits. However, the farther is the orbit of the light source / receiver, the less the magnetic charge affects the Sagnac delay. It is also assumed that the gravity of the Earth and the Sun near the surface is well described by the Bardeen metric.


2007 ◽  
Vol 75 (10) ◽  
Author(s):  
Orfeu Bertolami ◽  
Christian G. Böhmer ◽  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Sign in / Sign up

Export Citation Format

Share Document