scholarly journals CAN f(R) GRAVITY MIMIC GENERAL RELATIVITY?

Author(s):  
JE-AN GU

We discuss the stability of the general-relativity (GR) limit in modified theories of gravity, particularly the f(R) theory. The problem of approximating the higher-order differential equations in modified gravity with the Einstein equations (2nd-order differential equations) in GR is elaborated. We demonstrate this problem with a heuristic example involving a simple ordinary differential equation. With this example we further present the iteration method that may serve as a better approximation for solving the equation, meanwhile providing a criterion for assessing the validity of the approximation. We then discuss our previous numerical analyses of the early-time evolution of the cosmological perturbations in f(R) gravity, following the similar ideas demonstrated by the heuristic example. The results of the analyses indicated the possible instability of the GR limit that might make the GR approximation inaccurate in describing the evolution of the cosmological perturbations in the long run.

2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


Author(s):  
H.S. Vieira ◽  
V.B. Bezerra

In this paper, we use the Lagrangian formalism of classical mechanics and some assumptions to obtain cosmological differential equations analogous to Friedmann and Einstein equations, obtained from the theory of general relativity. This method can be used to a universe constituted of incoherent matter, that is, the cosmologic substratum is comprised of dust.


2020 ◽  
Vol 29 (13) ◽  
pp. 2030008 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo

Einstein’s General Relativity (GR) is possibly one of the greatest intellectual achievements ever conceived by the human mind. In fact, over the last century, GR has proven to be an extremely successful theory, with a well established experimental footing, at least for weak gravitational fields. Its predictions range from the existence of black holes and gravitational radiation (now confirmed) to the cosmological models. Indeed, a central theme in modern Cosmology is the perplexing fact that the Universe is undergoing an accelerating expansion, which represents a new imbalance in the governing gravitational equations. The cause of the late-time cosmic acceleration remains an open and tantalizing question, and has forced theorists and experimentalists to question whether GR is the correct relativistic theory of gravitation. This has spurred much research in modified theories of gravity, where extensions of the Hilbert–Einstein action describe the gravitational field, in particular, [Formula: see text] gravity, where [Formula: see text] is the curvature scalar. In this review, we perform a detailed theoretical and phenomenological analysis of specific modified theories of gravity and investigate their astrophysical and cosmological applications. We present essentially two largely explored extensions of [Formula: see text] gravity, namely: (i) the hybrid metric-Palatini theory; (ii) and modified gravity with curvature-matter couplings. Relative to the former, it has been established that both metric and Palatini versions of [Formula: see text] gravity possess interesting features but also manifest severe drawbacks. A hybrid combination, containing elements from both of these formalisms, turns out to be very successful in accounting for the observed phenomenology and avoids some drawbacks of the original approaches. Relative to the curvature-matter coupling theories, these offer interesting extensions of [Formula: see text] gravity, where the explicit nonminimal couplings between an arbitrary function of the scalar curvature [Formula: see text] and the Lagrangian density of matter, induces a nonvanishing covariant derivative of the energy-momentum tensor, which implies nongeodesic motion and consequently leads to the appearance of an extra force. We extensively explore both theories in a plethora of applications, namely, the weak-field limit, galactic and extragalactic dynamics, cosmology, stellar-type compact objects, irreversible matter creation processes and the quantum cosmology of a specific curvature-matter coupling theory.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1388-1396 ◽  
Author(s):  
SEOKCHEON LEE

We investigate the modified gravity theories in terms of the effective dark energy models. We compare the cosmic expansion history and the linear growth in different models. We also study the evolution of linear cosmological perturbations in modified theories of gravity assuming the Palatini formalism. We find the stability of the superhorizon metric evolution depends on models. We also study the matter density fluctuation in the general gauge and show the differential equations in super and sub-horizon scales.


2021 ◽  
pp. 2150193
Author(s):  
Taha A. Malik ◽  
Rafael Lopez-Mobilia

Various proposals for gravitational entropy densities have been constructed from the Weyl tensor. In almost all cases, though, these studies have been restricted to general relativity, and little has been done in modified theories of gravity. However, in this paper, we investigate the simplest proposal for an entropy density constructed from the Weyl tensor in five-dimensional Gauss–Bonnet gravity and find that it fails to reproduce the expected entropy of a black hole.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Oleksii Sokoliuk ◽  
Alexander Baransky

AbstractWe study Morris–Thorne static traversable wormhole solutions in different modified theories of gravity. We focus our study on the quadratic gravity $$f({\mathscr {R}}) = {\mathscr {R}}+a{\mathscr {R}}^2$$ f ( R ) = R + a R 2 , power-law $$f({\mathscr {R}}) = f_0{\mathscr {R}}^n$$ f ( R ) = f 0 R n , log-corrected $$f({\mathscr {R}})={\mathscr {R}}+\alpha {\mathscr {R}}^2+\beta {\mathscr {R}}^2\ln \beta {\mathscr {R}}$$ f ( R ) = R + α R 2 + β R 2 ln β R theories, and finally on the exponential hybrid metric-Palatini gravity $$f(\mathscr {\hat{R}})=\zeta \bigg (1+e^{-\frac{\hat{{\mathscr {R}}}}{\varPhi }}\bigg )$$ f ( R ^ ) = ζ ( 1 + e - R ^ Φ ) . Wormhole fluid near the throat is adopted to be anisotropic, and redshift factor to have a constant value. We solve numerically the Einstein field equations and we derive the suitable shape function for each MOG of our consideration by applying the equation of state $$p_t=\omega \rho $$ p t = ω ρ . Furthermore, we investigate the null energy condition, the weak energy condition, and the strong energy condition with the suitable shape function b(r). The stability of Morris–Thorne traversable wormholes in different modified gravity theories is also analyzed in our paper with a modified Tolman–Oppenheimer–Voklov equation. Besides, we have derived general formulas for the extra force that is present in MTOV due to the non-conserved stress-energy tensor.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Georg Herzog ◽  
Hèlios Sanchis-Alepuz

AbstractWe study solutions of the stellar structure equations for spherically symmetric objects in modified theories of gravity, where the Einstein-Hilbert Lagrangian is replaced by $$f(R)=R+\alpha R^2$$ f ( R ) = R + α R 2 and $$f(R,Q)=R+\alpha R^2+\beta Q$$ f ( R , Q ) = R + α R 2 + β Q , with R being the Ricci scalar curvature, $$Q=R_{\mu \nu }R^{\mu \nu }$$ Q = R μ ν R μ ν and $$R_{\mu \nu }$$ R μ ν the Ricci tensor. We work in the Palatini formalism, where the metric and the connection are assumed to be independent dynamical variables. We focus on stellar solutions in the mass-radius region associated to neutron stars. We illustrate the potential impact of the $$R^2$$ R 2 and Q terms by studying a range of viable values of $$\alpha $$ α and $$\beta $$ β . Similarly, we use different equations of state (SLy, FPS, HS(DD2) and HS(TMA)) as a simple way to account for the equation of state uncertainty. Our results show that for certain combinations of the $$\alpha $$ α and $$\beta $$ β parameters and equation of state, the effect of modifications of general relativity on the properties of stars is sizeable. Therefore, with increasing accuracy in the determination of the equation of state for neutron stars, astrophysical observations may serve as discriminators of modifications of General Relativity.


2019 ◽  
Vol 97 (4) ◽  
pp. 360-373
Author(s):  
Fateme Rajabi ◽  
Kourosh Nozari

We study a new type of extended theory of gravity in the framework of general scalar–tensor theories in which the higher order terms of curvature are coupled with a scalar field and its derivatives. We analyze the stability and evolution of cosmological perturbations in this setup. For this purpose, we perturb the Hubble parameter, matter density, and scalar field to check stability and evolution of perturbations to first order. In this framework, we investigate stability conditions for de Sitter and power law solutions and we examine viability of cosmological evolution of these perturbations. We consider some specific f(R) models and show that the stability analysis gives some constraints on the parameters of these models.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242019 ◽  
Author(s):  
TIBERIU HARKO ◽  
FRANCISCO S. N. LOBO

The late-time cosmic acceleration may be due to infra-red modifications of General Relativity. In particular, we consider a maximal extension of the Hilbert–Einstein action and analyze several interesting features of the theory. Generally, the motion is nongeodesic and takes place in the presence of an extra force, which is orthogonal to the four-velocity. These models could lead to some major differences, as compared to the predictions of General Relativity or other modified theories of gravity, in several problems of current interest, such as cosmology, gravitational collapse or the generation of gravitational waves. The study of these phenomena may also provide some specific signatures and effects, which could distinguish and discriminate between the various gravitational models.


Sign in / Sign up

Export Citation Format

Share Document