Orbital period cut-off of W UMa-type contact binaries

2020 ◽  
Vol 497 (3) ◽  
pp. 3493-3503 ◽  
Author(s):  
Xu-Dong Zhang ◽  
Sheng-Bang Qian

ABSTRACT Period cut-off and period–colour relation are two special characters of W UMa-type contact binaries. In the past, many authors noted these two properties, however, a comprehensive study was still lacking. In order to reveal a theoretical mechanism behind these two peculiarities, we collected 365 contact binaries whose orbital periods, mass ratios, masses, and radii are compiled and attempted to make this idea come true by statistical means. Then, we obtained a lower limit (0.15 d) of orbital period by studying the correlation among four physical parameters (orbital period P, mass ratio q, mass of primary star M1, and separation between two components a). Furthermore, we used the most reliable parameters (P and q) to check our result, fortunately, all evidence indicated that our predicted value is credible. In the end, the reason why the period–colour relation exists was also discussed.

Author(s):  
K Gazeas ◽  
S Zola ◽  
A Liakos ◽  
B Zakrzewski ◽  
S M Rucinski ◽  
...  

Abstract This paper presents the results of a combined spectroscopic and photometric study of 20 contact binary systems: HV Aqr, OO Aql, FI Boo, TX Cnc, OT Cnc, EE Cet, RW Com, KR Com, V401 Cyg, V345 Gem, AK Her, V502 Oph, V566 Oph, V2612 Oph, V1363 Ori, V351 Peg, V357 Peg, Y Sex, V1123 Tau and W UMa, which was conducted in the frame of the W UMa Project. Together with 51 already covered by the project and an additional 67 in the existing literature, these systems bring the total number of contact binaries with known combined spectroscopic and photometric solutions to 138. It was found that mass, radius and luminosity of the components follow certain relations along the MS and new empirical power relations are extracted. We found that 30 per cent of the systems in the current sample show extreme values in their parameters, expressed in their mass ratio or fill-out factor. This study shows that, among the contact binary systems studied, some have an extremely low mass ratio (q<0.1) or an ultra-short orbital period (Porb <0.25 d), which are expected to show evidence of mass transfer progress. The evolutionary status of these components is discussed with the aid of correlation diagrams and their physical and orbital parameters compared to those in the entire sample of known contact binaries. The existence of very short orbital periods confirms the very slow nature of the merging process, which seems to explain why their components still exist as MS stars in contact configurations even after several Gyr of evolution.


2020 ◽  
Vol 247 (2) ◽  
pp. 50 ◽  
Author(s):  
Weijia Sun ◽  
Xiaodian Chen ◽  
Licai Deng ◽  
Richard de Grijs

Author(s):  
Xiao-Hui Fang ◽  
Shengbang Qian ◽  
Miloslav Zejda ◽  
Soonthornthum Boonrucksar ◽  
Xiao Zhou ◽  
...  

Abstract 1SWASP J161335.80$-$284722.2 (hereafter J161335) is an eclipsing red-dwarf binary with an orbital period of $0.229778\:$d, which is around the short-period limit for contact binaries. Three sets of multi-color light curves of J161335 were obtained from different telescopes in 2015 and 2016 and are analyzed using the Wilson–Devinney method. We discovered that the system is a W-type contact system with a contact degree of 19% and a high mass ratio of 0.91. By using all available eclipse times, we found that the observed $-$ calculated $(O-C)$ diagram displays a cyclic oscillation with an amplitude of 0.00196($\pm 0.00006)\:$d and a period of 4.79($\pm 0.14)\:$yr while it undergoes a downward parabolic change. This downward variation corresponds to a continuous decrease in the orbital period at a rate of $dP/dt = -4.26(\pm$0.01) $\times$ 10$^{-7}\:$d$\:$yr$^{-1}$. The small-amplitude oscillation is explained as the light travel-time effect from the gravitational influence of a third body with a lowest mass of $M _{3}$ = 0.15($\pm 0.01)M_{\,\odot }$. In solving the light curves, we found that the third light is increasing, with the wavelength suggesting that the third body may be a cool red dwarf. This is in agreement with the results obtained by analyzing the $O-C$ diagram. The tertiary red dwarf is orbiting the central red-dwarf binary at an orbital separation of 2.8($\pm 0.2$) au. These results suggest that the J161335 system may be formed through early dynamical interaction where the original low-mass component was replaced by a higher-mass third body and the lower-mass component was kicked out to a wider orbit. In this way, a hierarchical triple system similar to J161335 with a high-mass-ratio binary and a small close-in third body is formed.


New Astronomy ◽  
2018 ◽  
Vol 62 ◽  
pp. 20-25 ◽  
Author(s):  
Ke Hu ◽  
Zhen-Hua Jiang ◽  
Yun-Xia Yu ◽  
Fu-Yuan Xiang

1980 ◽  
Vol 88 ◽  
pp. 517-520
Author(s):  
Frans Van 'T Veer

From a study of the mass ratio function of magnetically active contact binaries it is shown that the great majority of newly formed systems must possess nearly equal components.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Nian-Ping Liu ◽  
Thawicharat Sarotsakulchai ◽  
Somsawat Rattanasoon ◽  
Bin Zhang

Abstract Comprehensive photometric investigation of the early K-type contact binary IL Cnc was carried out. A few light curves from both ground-based telescopes and the Kepler space telescope were obtained (or downloaded) and then analyzed in detail. They are mostly found to be asymmetric and there are even continuously changing O’Connell effects in the light curves from Kepler K2 data, suggesting the system to be highly active. Using the Wilson–Devinney code (version 2013), photometric solutions were derived and then compared. It is found that the calculation of the mass ratio is easily affected by the spot settings. Combining the radial velocities determined from LAMOST median resolution spectral data, the mass ratio of the binary components is found to be M2/M1 = 1.76 ± 0.05. The components are in shallow contact ($f\sim 9\%$) and have a temperature difference about T2 − T1 = −280 ± 20 K. The system is demonstrated to be W-subtype, which may be a common feature of K-type contact binaries. The masses of the binary components were estimated to be $M_1\sim 0.51\, M_{\odot }$ and $M_2\sim 0.90\, M_{\odot }$. The values are in good agreement with that deduced from the parallax data of Gaia. The results suggest that the primary component lacks luminosity compared with the zero main sequence. The Hα spectral line of the primary component is found to be peculiar. Combining newly determined minimum light times with those collected from literature, the orbital period of IL Cnc is studied. It is found that the (O − C) values of the primary minima show sinusoidal variation while those of the secondary do not. The oscillation is more likely to be caused by the starspot activities, yet this assumption needs more data to support.


Sign in / Sign up

Export Citation Format

Share Document