scholarly journals Comprehensive photometric investigation of an active early K-type contact system—IL Cancri

2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Nian-Ping Liu ◽  
Thawicharat Sarotsakulchai ◽  
Somsawat Rattanasoon ◽  
Bin Zhang

Abstract Comprehensive photometric investigation of the early K-type contact binary IL Cnc was carried out. A few light curves from both ground-based telescopes and the Kepler space telescope were obtained (or downloaded) and then analyzed in detail. They are mostly found to be asymmetric and there are even continuously changing O’Connell effects in the light curves from Kepler K2 data, suggesting the system to be highly active. Using the Wilson–Devinney code (version 2013), photometric solutions were derived and then compared. It is found that the calculation of the mass ratio is easily affected by the spot settings. Combining the radial velocities determined from LAMOST median resolution spectral data, the mass ratio of the binary components is found to be M2/M1 = 1.76 ± 0.05. The components are in shallow contact ($f\sim 9\%$) and have a temperature difference about T2 − T1 = −280 ± 20 K. The system is demonstrated to be W-subtype, which may be a common feature of K-type contact binaries. The masses of the binary components were estimated to be $M_1\sim 0.51\, M_{\odot }$ and $M_2\sim 0.90\, M_{\odot }$. The values are in good agreement with that deduced from the parallax data of Gaia. The results suggest that the primary component lacks luminosity compared with the zero main sequence. The Hα spectral line of the primary component is found to be peculiar. Combining newly determined minimum light times with those collected from literature, the orbital period of IL Cnc is studied. It is found that the (O − C) values of the primary minima show sinusoidal variation while those of the secondary do not. The oscillation is more likely to be caused by the starspot activities, yet this assumption needs more data to support.

2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Jia-jia He ◽  
Jing-jing Wang

The short-period solar-type contact binary HH Boo was monitored photometrically for about 8 years. It is found that the CCD light curves in the B, V, R, and I bands obtained in 2010 are symmetric, while the multicolor light curves observed in 2011 and 2012 by several investigators showed a positive O’Connell effect where the maxima following the primary minima are higher than the other ones. This indicates that the light curve of the solar-type contact binary is variable. By analyzing our multicolor light curves with the Wilson-Devinney code (W-D code), it is confirmed that HH Boo is a W-type shallow-contact binary system with a mass ratio of q = 1.703(31) and a degree of contact factor of f = 12.86%(0.73%). By including 109 new determined times of light minimum together with those compiled from the literature, it is detected that the O-C diagram shows a cyclic oscillation with a period of T3 = 6.58(11) yr and an amplitude of A3 = 0.0018(1) d. The cyclic change may reveal the presence of an extremely cool third body orbiting the central binary.


1974 ◽  
Vol 59 ◽  
pp. 199-199
Author(s):  
J. B. Hutchings

In the wake of recent theoretical work on contact systems (e.g. Whelan, 1972; Biermann and Thomas, 1972; Lucy, 1968), it is of importance to determine fundamental data from observations. This has been done recently by several groups in analysing light curves (Mochnacki and Doughty, 1972; Hutchings and Hill, 1973; Wilson and Devinney, 1973), and it is found that shapes, temperature differences and distributions, and mass-ratios, can be determined in many cases. However, where spectroscopic data are also available, the mass-ratios are not always in agreement. Using the photometric models, it is possible (Hutchings, 1973) to calculate the distortion of line profiles resulting (primarily) from the non-uniform brightness over the component stars in these systems. This distortion leads to the characteristically observed ‘square’ velocity curves for the systems (e.g. Binnendijk, 1967). Correction for the effect in most cases (a) resolves the mass-ratio discrepancy and (b) leads to better estimates for the masses. The faintness of most contact systems makes detailed spectroscopy difficult, but there appears to be a need for further work in the directions outlined here to improve the fundamental data available on them. These results should also be borne in mind in inspecting previous work on contact binaries.


2020 ◽  
Vol 497 (3) ◽  
pp. 3381-3392
Author(s):  
Di-Fu Guo ◽  
Kai Li ◽  
Xing Gao ◽  
Dong-Yang Gao ◽  
Zhi-Jian Xu ◽  
...  

ABSTRACT By analysing the data observed by the Comet Search Programme telescope at Xingming Observatory from 2018 October 11 to 2018 December 19, 24 eclipsing binaries were identified. By cross-matching with the VSX (AAVSO) website, we found that four binaries are newly discovered. By analysing the Transiting Exoplanet Survey Satellite (TESS) data, the light curves of 17 binaries were obtained. First photometric solutions of 23 binaries were obtained by simultaneously analysing all the light curves, except for NSVS 1908107 (first analysed by Pan et al.). Based on the photometric solutions, nine binaries belong to detached binary systems, ten binaries belong to semidetached binary systems, and five binaries belong to contact binary systems. Two W-subtype low-mass ratio contact binaries (the less massive components are hotter), with total eclipsing light curves, were identified: Mis V1395 is a deep contact binary (q = 0.150, $f=80{{\ \rm per\ cent}}$), while NSVS 1917038 is a low-mass ratio binary with an unexpectedly marginal contact degree (q = 1/6.839 = 0.146, $f=4{{\ \rm per\ cent}}$). The total eclipsing detached binary GSC 03698-00022 has an extremely low mass ratio of q = 0.085. The Algol-type binary NSVS 1908107 is also found to have an extremely low mass ratio of q = 0.081. The Algol-type binary DK Per exhibits a continuous period decrease at a rate of dP/dt = −1.26 × 10−7 d yr−1, which may result from the orbital angular momentum loss. Based on the light curves obtained from the TESS data, a pulsating binary candidate (NSVS 1913053) was found.


1980 ◽  
Vol 88 ◽  
pp. 133-137
Author(s):  
Daiichiro Sugimoto ◽  
Shigeki Miyaji

SV Centauri is an early-type contact binary for which detailed physical data have been obtained from observations (Wilson and Starr 1976). The orbital period is p = 1.659 days and the separation is a = 16.1 R⊙. The radii of component Stars A and B are, respectively, R = 7.2 and 6.9 R⊙ so that they are in overcontact. The masses and the luminosities are M = 11.1 and 9.3 M⊙, and L = 2830 and 10900 L⊙ for Stars A and B, respectively. The more massive Star A is called the primary star but its luminosity is fainter than Star B. This implies that it is in the phase of rapid mass transfer and mass is outflowing from Star A. Indeed one of the most interesting and important points of this system is that the rate of period change is measured to be dP/dt = −9.4 × 10−8 (Irwin and Landolt 1972) which corresponds to the mass transfer rate of dMA/dt = −4 × 10−4 M⊙ yr−1.


Author(s):  
Yanke Tang ◽  
Yani Guo ◽  
Kai Li ◽  
Ning Gai ◽  
Zhikai Li

Abstract PhotometricanalysisofthecontactbinariesTIC393943031andTIC89428764was carried out usingTESS and SuperWASP data for the first time. Using Wilson-Devinneycode, we have discovered TIC 393943031 is a low-mass-ratio deep contact binary with a fillout factor of 50.9(±1)% and a mass ratio of q = 0.163 ± 0.001. TIC 89428764 is a medium and low-mass-ratio contact binary with a fillout factor of 34.5(±1)% and a mass ratio of q = 0.147±0.001. Furthermore, the period study reveals both the stars exhibit continuously increasing periods, the increasing rate is 4.21×10−7day ·year−1for TIC 393943031while 6.36 × 10−7day · year−1for TIC 89428764. The possible reason is mass transfer from the secondary component to the primary component for both the stars. Meanwhile, we discussed their evolutionary phases and orbital angular momenta.


2021 ◽  
Vol 922 (2) ◽  
pp. 122
Author(s):  
Kai Li ◽  
Qi-Qi Xia ◽  
Chun-Hwey Kim ◽  
Shao-Ming Hu ◽  
Di-Fu Guo ◽  
...  

Abstract The cutoff mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 (q ∼ 0.055 for J082700 and q ∼ 0.089 for J132829). J082700 is a shallow contact binary with a contact degree of ∼19%, and J132829 is a deep contact system with a fill-out factor of ∼70%. The O − C diagram analysis indicated that the two systems manifested long-term period decreases. In addition, J082700 exhibits a cyclic modulation which is more likely resulting from the Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of q ≲ 0.1 and discovered that the values of J spin/J orb of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One explanation is that some physical processes, unknown to date, are not considered when Hut presented the dynamic stability criterion. The other explanation is that the dimensionless gyration radius (k) should be smaller than the value we used (k 2 = 0.06). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.


1989 ◽  
Vol 107 ◽  
pp. 354-354
Author(s):  
Y. Nakamura ◽  
A. Okazaki ◽  
J. Katahira

Abstract.Spectroscopic observations were performed of the early-type contact binary AW Lac with an image-intensified coude spectrograph of 1.9−m telescope at the Okayama Astro-physical Observatory. A total of twenty-two spectra covering blue region with a dispersion of 16 Amm−1 have been secured on Kodak IIa-O baked plates. In every spectra sharp interstellar Call H,K lines are clearly seen. The spectral type of AW Lac has been estimated as early B, which substantially confirms the one adopted in the photometric analysis by Jiang et al. (1983) and is diffrent from A0 listed in General Catalogue of Variable Stars (Kholopov et al. 1985). Contrary to the suggestion by the photometric solution of Jiang et al., no definite secondary lines could be separated, though some indications of light contamination due to the secondary component are surely observed. This would imply that the light ratio of the components should be somewhat smaller than that derived by photometric analysis. No emission features appeared either. The measurement of radial velocities of the primary component for the orbital elements was made for twenty spectra by a conventional method. It was difficult to measure the radial velocities because the lines are quite broadened and deformed. Hence the measured values for the radial velocities should be regarded as rather preliminary. The derived spectroscopic elements, combined with the photometric data, give the absolute dimensions of the system for each assumed mass ratio q. For q = 1, being the adopted photometric solution by Jiang et al., we obtain too small value for the primary’s mass, comparing with its spectral type. For the mass ratio as small as q = 0.6, we can obtain a reasonable value for the mass of the primary. However, in order to get more definite conclusion the cross-correlation method would be more appropriate for the spectroscopic analysis of this system.


1992 ◽  
Vol 151 ◽  
pp. 379-382
Author(s):  
P.P. Rainger ◽  
S.A. Bell ◽  
R.W. Hilditch

The first infrared photometry for the W-UMa system SS Ari is presented. An analysis based on medium resolution spectroscopy presented here shows that SS Ari is a W-type system with a mass ratio of 0.33. It seems certain that the asymmetry in the published light curves and those obtained for this study can be explained by the effect of spots on one or possibly both components of the system. The precise location, size and temperature of these spots require the use of Doppler Imaging techniques in conjunction with high quality multi-band photometry.


1989 ◽  
Vol 107 ◽  
pp. 348-349
Author(s):  
Bruce J. Hrivnak

Recent theories of the origin and evolution of contact binaries suggest that the two stars evolve into contact through angular momentum loss (AML; Mochnacki 1981, Vilhu 1982). When in contact, the system then evolves toward smaller mass ratio through mass transfer from the secondary to the primary component (Webbink 1976, Rahunen and Vilhu 1982). Most contact binaries have mass ratios of 0.3 to 0.5.


Sign in / Sign up

Export Citation Format

Share Document