scholarly journals Modelling the asymmetry of the halo cross-correlation function with relativistic effects at quasi-linear scales

2020 ◽  
Vol 498 (1) ◽  
pp. 981-1001
Author(s):  
Shohei Saga ◽  
Atsushi Taruya ◽  
Michel-Andrès Breton ◽  
Yann Rasera

ABSTRACT The observed galaxy distribution via galaxy redshift surveys appears distorted due to redshift-space distortions (RSD). While one dominant contribution to RSD comes from the Doppler effect induced by the peculiar velocity of galaxies, the relativistic effects, including the gravitational redshift effect, are recently recognized to give small but important contributions. Such contributions lead to an asymmetric galaxy clustering along the line of sight, and produce non-vanishing odd multipoles when cross-correlating between different biased objects. However, non-zero odd multipoles are also generated by the Doppler effect beyond the distant-observer approximation, known as the wide-angle effect, and at quasi-linear scales, the interplay between wide-angle and relativistic effects becomes significant. In this paper, based on the formalism developed by Taruya et al., we present a quasi-linear model of the cross-correlation function taking a proper account of both the wide-angle and gravitational redshift effects, as one of the major relativistic effects. Our quasi-linear predictions of the dipole agree well with simulations even at the scales below $20\, h^{-1}\,$Mpc, where non-perturbative contributions from the halo potential play an important role, flipping the sign of the dipole amplitude. When increasing the bias difference and redshift, the scale where the sign flip happens is shifted to a larger scale. We derive a simple approximate formula to quantitatively account for the behaviours of the sign flip.

2020 ◽  
Vol 499 (1) ◽  
pp. 893-905
Author(s):  
Emanuele Castorina ◽  
Martin White

ABSTRACT The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts, breaking the translational invariance of galaxy clustering down to a rotational invariance around the observer. This becomes important when the line-of-sight direction varies significantly across a survey, leading to what are known as ‘wide-angle’ effects in redshift-space distortions. Wide-angle effects will also be present in measurements of the momentum field, i.e. the galaxy density-weighted velocity field, in upcoming peculiar velocity surveys. In this work, we study how wide-angle effects modify the predicted correlation function and power spectrum for momentum statistics, both in autocorrelation and in cross-correlation with the density field. Using both linear theory and the Zel'dovich approximation, we find that deviations from the plane-parallel limit are large and could become important in data analysis for low-redshift surveys. We point out that even multipoles in the cross-correlation between density and momentum are non-zero regardless of the choice of line of sight, and therefore contain new cosmological information that could be exploited. We discuss configuration space, Fourier space, and spherical analyses; providing exact expressions in each case rather than relying on an expansion in small angles. We hope these expressions will be of use in the analysis of upcoming surveys for redshift-space distortions and peculiar velocities.


2005 ◽  
Vol 636 (1) ◽  
pp. L9-L12 ◽  
Author(s):  
Jeff Cooke ◽  
Arthur M. Wolfe ◽  
Eric Gawiser ◽  
Jason X. Prochaska

Sign in / Sign up

Export Citation Format

Share Document