scholarly journals Black hole spin in X-ray binaries: giving uncertainties an f

2020 ◽  
Vol 500 (3) ◽  
pp. 3640-3666
Author(s):  
Greg Salvesen ◽  
Jonah M Miller

ABSTRACT The two established techniques for measuring black hole spin in X-ray binaries often yield conflicting results, which must be resolved before either method may be deemed robust. In practice, black hole spin measurements based on fitting the accretion disc continuum effectively do not marginalize over the colour-correction factor fcol. This factor parametrizes spectral hardening of the disc continuum by the disc atmosphere, whose true properties are poorly constrained. We incorporate reasonable systematic uncertainties in fcol into the eight (non-maximal) black hole spin measurements vetted by the disc continuum fitting community. In most cases, an fcol uncertainty of ±0.2–0.3 dominates the black hole spin error budget. We go on to demonstrate that plausible departures in fcol values from those adopted by the disc continuum fitting practitioners can bring the discrepant black hole spins into agreement with those from iron line modelling. Systematic uncertainties in fcol, such as the effects of strong magnetization, should be better understood before dismissing their potentially dominant impact on the black hole spin error budget.

2019 ◽  
Vol 487 (3) ◽  
pp. 3488-3504
Author(s):  
Srimanta Banerjee ◽  
Chandrachur Chakraborty ◽  
Sudip Bhattacharyya

2018 ◽  
Vol 14 (S346) ◽  
pp. 426-432
Author(s):  
Y. Qin ◽  
T. Fragos ◽  
G. Meynet ◽  
P. Marchant ◽  
V. Kalogera ◽  
...  

AbstractThe six LIGO detections of merging black holes (BHs) allowed to infer slow spin values for the two pre-merging BHs. The three cases where the spins of the BHs can be determined in high-mass X-ray binaries (HMXBs) show that those BHs have high spin values. We discuss here scenarios explaining these differences in spin properties in these two classes of object.


2015 ◽  
Vol 800 (1) ◽  
pp. 17 ◽  
Author(s):  
T. Fragos ◽  
J. E. McClintock

2010 ◽  
Vol 719 (1) ◽  
pp. L79-L83 ◽  
Author(s):  
T. Fragos ◽  
M. Tremmel ◽  
E. Rantsiou ◽  
K. Belczynski

2020 ◽  
Vol 495 (2) ◽  
pp. 2408-2415
Author(s):  
Pei-Xin Shen ◽  
Wei-Min Gu

ABSTRACT When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray binaries (XRBs). In the low/hard state, there exist disc–jet couplings in XRBs, but it remains uncertain whether the jet power comes from the disc or the central accretor. Moreover, black hole X-ray binaries (BHXRBs) have different properties compared with neutron star X-ray binaries (NSXRBs): quiescent BHXRBs are typically two to three orders of magnitude less luminous than NSXRBs in X-ray, whereas BHXRBs are more radio loud than NSXRBs. In observations, an empirical correlation has been established between radio and X-ray luminosity, $L_{\rm R} \propto L_{\rm X}^b$, where b ∼ 0.7 for BHXRBs and b ∼ 1.4 for non-pulsating NSXRBs. However, there are some outliers of BHXRBs showing unusually steep correlation as NSXRBs at higher luminosities. In this work, under the assumption that the origin of jet power is related to the internal energy of the inner disc, we apply our magnetized, radiatively efficient thin disc model and the well-known radiatively inefficient accretion flow model to NSXRBs and BHXRBs. We find that the observed radio/X-ray correlations in XRBs can be well understood by the disc–jet couplings.


2020 ◽  
Vol 501 (1) ◽  
pp. 548-563 ◽  
Author(s):  
Filippos Koliopanos ◽  
Mathias Péault ◽  
Georgios Vasilopoulos ◽  
Natalie Webb

ABSTRACT We have analysed the X-ray spectra of all known Ultra-Compact X-ray Binaries (UCXBs), with the purpose of constraining the chemical composition of their accretion disc and donor star. Our investigation was focused on the presence (or absence) of the Fe Kα emission line, which was used as the probe of chemical composition of the disc, based on previously established theoretical predictions for the reflection of X-ray radiation off the surface of C/O-rich or He-rich accretion discs in UCXBs. We have contrasted the results of our spectral analysis to the history of type I X-ray bursts from these systems, which can also indicate donor star composition. We found that UCXBs with prominent and persistent iron Kα emission also featured repeat bursting activity. On the other hand, the UCXBs for which no iron line was detected, appear to have few or no type I X-ray bursts detected over more than a decade of monitoring. Based on Monte Carlo simulations, demonstrating a strong correlation between the Fe Kα line strength and the abundance of C and O in the accretion disc material and given the expected correlation between the H/He abundance and the recurrence rate of type I X-ray bursts, we propose that there is a considerable likelihood that UCXBs with persistent iron emission have He-rich donors, while those that do not, likely have C/O or O/Ne/Mg-rich donors. Our result strongly advocate for the development of more sophisticated simulations of X-ray reflection from hydrogen-poor accretion discs.


Sign in / Sign up

Export Citation Format

Share Document