Testing the Impact of Coronal Mass Ejections on Cosmic Ray Intensity Modulation with Algorithm selected Forbush Decreases

Author(s):  
O Okike ◽  
O C Nwuzor ◽  
F C Odo ◽  
E U Iyida ◽  
J E Ekpe ◽  
...  

Abstract The relationship between coronal mass ejections (CMEs) and Forbush decreases (FDs) has been investigated in the past. But selection of both solar events are difficult. Researchers have developed manual and automated methods in efforts to identify CMEs as well as FDs. While scientists investigating CMEs have made significant advancement, leading to several CME catalogues, including manual and automated events catalogues, those analyzing FDs have recorded relatively less progress. Till date, there are no comprehensive manual FD catalogues, for example. There are also paucity of Automated FD lists. Many investigators, therefore, attempt to manually select FDs which are subsequently used in the analysis of the impact of CMEs on galactic cosmic ray (GCR) flux depressions. However, some of the CME versus FD correlation results might be biased since manual event identification is usually subjective, unable to account for the presence of solar-diurnal anisotropy which characterizes GCR flux variations. The current article investigates the relation between CMEs and FDs with emphasis on accurate and careful Forbush event selection.

Author(s):  
K. MUNAKATA ◽  
S. YASUE ◽  
C. KATO ◽  
S. AKAHANE ◽  
M. KOYAMA ◽  
...  

2021 ◽  
Author(s):  
Mateja Dumbovic

<p>Coronal mass ejections (CMEs) are the most violent eruptions in the solar system. They are one of the main drivers of the heliospheric variability and cause various interplanetary as well as planetary disturbances. One of their very common in-situ signatures are short-term reductions in the galactic cosmic ray (GCR) flux (i.e. Forbush decreases), which are measured by ground-based instruments at Earth and Mars, as well as various spacecraft throughout the heliosphere (most recently by Solar Orbiter). In general, interplanetary magnetic structures interact with GCRs producing depressions in the GCR flux. Therefore, different types of interplanetary magnetic structures cause different types of GCR depressions, allowing us to distinguish between them. In the interplanetary space the CME typically consists of two structures: the presumably closed flux rope and the shock/sheath which is formed ahead of the flux rope as it propagates and expands in the interplanetary space. Interaction of GCRs with these two structures is modelled separately, where the flux-rope related Forbush decrease can be modelled assuming that the GCRs diffuse slowly into the expanding flux rope, which is initially empty at its center (ForbMod model). The resulting Forbush decrease at a given time, i.e. heliospheric distance, reflects the evolutionary properties of CMEs. However, ForbMod is not yet able to take into account complex, non-self-similar evolution of the flux rope. Nevertheless, Forbush decreases can undoubtedly give us information on the CMEs in the heliosphere, especially where other measurements are lacking, and with further development, Forbush decrease reverse modelling could provide insight into the CME evolution.</p>


1995 ◽  
Vol 16 (9) ◽  
pp. 221-225 ◽  
Author(s):  
G.A. Bazilevskaya ◽  
M.B. Krainev ◽  
V.S. Makhmutov ◽  
Yu.I. Stozhkov ◽  
A.K. Svirzhevskaya ◽  
...  

2021 ◽  
Vol 503 (4) ◽  
pp. 5675-5691
Author(s):  
O Okike ◽  
J A Alhassan ◽  
E U Iyida ◽  
A E Chukwude

ABSTRACT Short-term rapid depressions in Galactic cosmic ray (GCR) flux, historically referred to as Forbush decreases (FDs), have long been recognized as important events in the observation of cosmic ray (CR) activity. Although theories and empirical results on the causes, characteristics, and varieties of FDs have been well established, detection of FDs, from either isolated detectors' or arrays of neutron monitor data, remains a subject of interest. Efforts to create large catalogues of FDs began in the 1990s and have continued to the present. In an attempt to test some of the proposed CR theories, several analyses have been conducted based on the available lists. Nevertheless, the results obtained depend on the FD catalogues used. This suggests a need for an examination of consistency between FD catalogues. This is the aim of the present study. Some existing lists of FDs, as well as FD catalogues developed in the current work, were compared, with an emphasis on the FD catalogues selected by the global survey method (GSM). The Forbush effects and interplanetary disturbances database (FEID), created by the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation Russian Academy of Sciences (IZMIRAN), is the only available comprehensive and up to date FD catalogue. While there are significant disparities between the IZMIRAN FD and other event lists, there is a beautiful agreement between FDs identified in the current work and those in the FEID. This may be a pointer to the efficiency of the GSM and the automated approach to FD event detection presented here.


Sign in / Sign up

Export Citation Format

Share Document