diurnal anisotropy
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 0)

Author(s):  
Agnieszka Gil ◽  
Alexander Mishev ◽  
Stepan Poluianov ◽  
Ilya Usoskin

2021 ◽  
Author(s):  
David Ruffolo ◽  
Nutthawara Buatthaisong ◽  
Alejandro Sáiz ◽  
Chanoknan Banglieng ◽  
Warit Mitthumsiri ◽  
...  

Author(s):  
O Okike ◽  
O C Nwuzor ◽  
F C Odo ◽  
E U Iyida ◽  
J E Ekpe ◽  
...  

Abstract The relationship between coronal mass ejections (CMEs) and Forbush decreases (FDs) has been investigated in the past. But selection of both solar events are difficult. Researchers have developed manual and automated methods in efforts to identify CMEs as well as FDs. While scientists investigating CMEs have made significant advancement, leading to several CME catalogues, including manual and automated events catalogues, those analyzing FDs have recorded relatively less progress. Till date, there are no comprehensive manual FD catalogues, for example. There are also paucity of Automated FD lists. Many investigators, therefore, attempt to manually select FDs which are subsequently used in the analysis of the impact of CMEs on galactic cosmic ray (GCR) flux depressions. However, some of the CME versus FD correlation results might be biased since manual event identification is usually subjective, unable to account for the presence of solar-diurnal anisotropy which characterizes GCR flux variations. The current article investigates the relation between CMEs and FDs with emphasis on accurate and careful Forbush event selection.


2019 ◽  
Vol 208 ◽  
pp. 08012
Author(s):  
M. Amenomori ◽  
X. J. Bi ◽  
D. Chen ◽  
T. L. Chen ◽  
W. Y. Chen ◽  
...  

We analyze the temporal variation of the solar diurnal anisotropy of the multi-TeV cosmic-ray intensity observed with the Tibet air shower array from 2000 to 2009, covering the maximum and minimum of the 23rd solar cycle. We comfirm that a remarkable additional anisotropy component is superposed on the Compton-Getting anisotropy at 4.0 TeV, while its amplitude decreases at higher energy regions. In constrast to the additional anisotropy reported by the Matsushiro experiment at 0.6 TeV, we find the residual component measured by Tibet at multi-TeV energies is consistent with being stable, with a fairly constant amplitude of 0.041% ± 0.003% and a phase at around 07.17 ± 00.16 local solar time at 4.0 TeV. This suggests the additional anisotropy observed by the Tibet experiment could result from mechanisms unrelated to solar activities.


2016 ◽  
Vol 34 (11) ◽  
pp. 1053-1068 ◽  
Author(s):  
Anastasia Tezari ◽  
Helen Mavromichalaki ◽  
Dimitrios Katsinis ◽  
Anastasios Kanellakopoulos ◽  
Sofia Kolovi ◽  
...  

Abstract. The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.


Sign in / Sign up

Export Citation Format

Share Document