scholarly journals GMRT observations of IC 711 – the longest head-tail radio galaxy known

2020 ◽  
Vol 493 (3) ◽  
pp. 3811-3824
Author(s):  
Shweta Srivastava ◽  
Ashok K Singal

ABSTRACT We present low frequency, GMRT observations at 240, 610, and 1300 MHz of IC 711, a narrow angle tail (NAT) radio galaxy. The total angular extent of the radio emission, ∼22 arcmin, corresponds to a projected linear size of ∼900 kpc, making it the longest among the known head-tail radio galaxies. The objectives of the GMRT observations were to investigate the radio morphology, especially of the long tail structure, at low frequencies. The radio structure, especially initial ∼10 arcmin of tail being a long straight feature, does not seem to be consistent with a simple circular motion around the cluster centre, as previously suggested in the literature. Two sharp bends after the straight section of the tail cast doubt on the prevailing idea in the literature that the long narrow tails represent trails left behind by the fast moving parent optical galaxy with respect to the cluster medium, as the optical galaxy could not have undergone such sharp bends in its path, under any conceivable gravitational influence of some individual galaxy or of the overall cluster gravitational potential. In fact, the tail does not seem to have been influenced by the gravitational field of any of the cluster-member galaxies. The radio spectrum of the head, coinciding with the optical galaxy, is flat ($\alpha \stackrel{\lt }{_{\sim }}0.4$ for S∝ ν−α), but steadily steepens along the radio tail, with the end part of the tail showing the steepest spectrum ($\alpha \, {\sim}$ 4–5) ever seen in any diffuse radio emission region.

2020 ◽  
Vol 496 (3) ◽  
pp. 3381-3389 ◽  
Author(s):  
Z Randriamanakoto ◽  
C H Ishwara-Chandra ◽  
A R Taylor

ABSTRACT We report the discovery of a remnant radio active galactic nucleus (AGN) J1615+5452 in the field of ELAIS-N1. GMRT continuum observations at 150, 325, and 610 MHz combined with archival data from the 1.4 GHz NVSS survey were used to derive the radio spectrum of the source. At a redshift z ∼ 0.33, J1615+5452 has a linear size of ∼100 kpc and spectral indices ranging between $\alpha ^{1400}_{610} \lt -1.5$ and $\alpha ^{325}_{150} = -0.61 \pm 0.12$. While the source has a diffuse radio emission at low frequencies, we do not find evidence of core, jets, or hotspots in the 1.4 GHz VLA data of ∼5 arcsec angular resolution. Such morphological properties coupled with a curved radio spectrum suggest that the AGN fueling mechanisms undergo a shortage of energy supply which is typical of a dying radio AGN. This is consistent with the observed steep curvature in the spectrum Δα ≈ −1, the estimated synchrotron age of $t_{\rm s}=76.0\, ^{+7.4}_{-8.7}$ Myr and a toff/ts ratio of ∼0.3.


2018 ◽  
Vol 612 ◽  
pp. A52 ◽  
Author(s):  
E. O’Gorman ◽  
C. P. Coughlan ◽  
W. Vlemmings ◽  
E. Varenius ◽  
S. Sirothia ◽  
...  

The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.


It may be thought that radio astronomical measurements made on the earth are not subject to the influence of the atmosphere and ionosphere to any great extent and that consequently there is no demand for measurements from earth satellites or other space stations. Unfortunately this is not the case and certain measurements from outside the earth’s atmosphere are very much desired. The radio spectrum so far explored extends from a low frequency limit in the 10 to 20 Mc/s band, to an upper limit in the millimetre waveband. In the millimetre band the limitation to the extension of the spectrum arises from absorption bands in the atmosphere, whereas at low frequencies the extension is limited by absorption and disturbances in the ionosphere. In this paper some examples will be given of the need to overcome these obstacles.


2019 ◽  
Vol 628 ◽  
pp. A69 ◽  
Author(s):  
A. Shulevski ◽  
P. D. Barthel ◽  
R. Morganti ◽  
J. J. Harwood ◽  
M. Brienza ◽  
...  

We have examined the giant radio galaxy 3C 236 using LOFAR at 143 MHz down to an angular resolution of 7″, in combination with observations at higher frequencies. We used the low frequency data to derive spectral index maps with the highest resolution yet at these low frequencies. We confirm a previous detection of an inner hotspot in the north-west lobe and for the first time observe that the south-east lobe hotspot is in fact a triple hotspot, which may point to an intermittent source activity. Also, the spectral index map of 3C 236 shows that the spectral steepening at the inner region of the northern lobe is prominent at low frequencies. The outer regions of both lobes show spectral flattening, in contrast with previous high frequency studies. We derive spectral age estimates for the lobes, as well as particle densities of the IGM at various locations. We propose that the morphological differences between the lobes are driven by variations in the ambient medium density as well as the source activity history.


Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt ◽  
Z. Zhu ◽  
R. B. Wayth ◽  
J. L. B. Line

Abstract Diffuse, non-thermal emission in galaxy clusters is increasingly being detected in low-frequency radio surveys and images. We present a new diffuse, steep-spectrum, non-thermal radio source within the cluster Abell 1127 found in survey data from the Murchison Widefield Array (MWA). We perform follow-up observations with the ‘extended’ configuration MWA Phase II with improved resolution to better resolve the source and measure its low-frequency spectral properties. We use archival Very Large Array S-band data to remove the discrete source contribution from the MWA data, and from a power law model fit we find a spectral index of –1.83±0.29 broadly consistent with relic-type sources. The source is revealed by the Giant Metrewave Radio Telescope at 150 MHz to have an elongated morphology, with a projected linear size of 850 kpc as measured in the MWA data. Using Chandra observations, we derive morphological estimators and confirm quantitatively that the cluster is in a disturbed dynamical state, consistent with the majority of phoenices and relics being hosted by merging clusters. We discuss the implications of relying on morphology and low-resolution imaging alone for the classification of such sources and highlight the usefulness of the MHz to GHz radio spectrum in classifying these types of emission. Finally, we discuss the benefits and limitations of using the MWA Phase II in conjunction with other instruments for detailed studies of diffuse, steep-spectrum, non-thermal radio emission within galaxy clusters.


2017 ◽  
Vol 13 (S337) ◽  
pp. 66-69
Author(s):  
Anna V. Bilous

AbstractPSR B0943+10 is an old non-recycled pulsar which for decades has been mostly known for its rapid and spontaneous radio mode switching. Recently, Hermsen et al. (2013) discovered correlated changes in the thermal X-ray emission from the polar cap, thus demonstrating that radio modes are not just a product of the local changes in the radio emission region, but a sign of some global magnetospheric transformation. At about the same time, owing to the commissioning of the new generation of low-frequency radio arrays, the broadband observations at the lowest edge of ionospheric transparency window became available. At these radio frequencies profile morphology and the single-pulse properties of PSR B0943+10’s emission become very dynamic, providing details not only about the emission itself, but also about the conditions in the polar gap. Here, I will present the recent results of the LOFAR observations of PSR B0943+10 and discuss their contribution to the multiwavelength picture.


2021 ◽  
Author(s):  
◽  
Stefan Duchesne

<p>Low-frequency radio imaging of the southern sky has become available with the advent of the Murchison Widefield Array (MWA). The topic of this thesis is the study of extended, low-frequency radio emission, with a primary focus on the non-thermal synchrotron emission associated with the intra-cluster medium (ICM) of galaxy clusters. We do not limit the study to such emission, however, and investigate a small sample of other interesting and extended radio emission from objects in the southern sky.   A significant portion of this work is invested in detecting, and characterising, extended, diffuse radio emission from galaxy clusters within a 45 degree by 45 degree region of the southern sky centred on R.A. = 0 hours, decl. = -27 degrees. This field is chosen as a deep MWA image has been made available which is sensitive to extended structures. Within the field we search for low-frequency, diffuse cluster emission, previously detected or otherwise. In doing so we find 34 diffuse radio sources, 3 of which are newly detected haloes, 1 newly detected relic with many new candidates of each. Further, we detect a new phoenix candidate as well as 2 candidate dead radio galaxies at the centre of clusters. We confirm previous observations of such emission as well, and measure properties such as their integrated flux densities, spectral indices, and sizes where possible. We compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power with the cluster X-ray luminosity and mass. We find that both scaling relations are consistent with previous findings despite the increase in sample size, though note that the raw scatter in the data for best-fitting parameters increases with increase in sample size. In this, we demonstrate the utility of low-frequency radio telescopes like the MWA in detecting such emission, showing that the MWA is pushing into higher-redshift, lower-mass systems, though we caution that the low resolution of the MWA can work against us.  We follow-up on two galaxy clusters found to host extended emission - Abell S1136 and Abell S1063. In the case of Abell S1136 we observe the emission at its centre with the Australia Telescope Compact Array (ATCA) and determine the presence of a core, suggesting the emission to be that of an ancient episode of an active galactic nucleus in the central elliptical of the cluster, ESO 470-G020. After reducing archival ATCA data for Abell S1063 we find no evidence of a halo and consider the source to be constructed of blended point sources. We close with a description of a strong double-lobed radio source associated with a non-elliptical host ESO 472-G013, likely a spiral or irregular galaxy, that was found serendipitously whilst searching for diffuse cluster emission. We explore the host within the context of star-formation, and consider the possible origins of the AGN and lobes due to interaction with either the nearby spiral, ESO 472-G012, or a past or ongoing merger event.</p>


2006 ◽  
Vol 2 (14) ◽  
pp. 374-375
Author(s):  
Gianfranco Brunetti

AbstractThe particle reaceleration model is one of the most promising possibilities to explain the Mpc-scale diffuse radio emission detected in a number of galaxy clusters. Ongoing and future radio observations at low frequencies may help in constraining and testing this model.


2021 ◽  
Author(s):  
◽  
Stefan Duchesne

<p>Low-frequency radio imaging of the southern sky has become available with the advent of the Murchison Widefield Array (MWA). The topic of this thesis is the study of extended, low-frequency radio emission, with a primary focus on the non-thermal synchrotron emission associated with the intra-cluster medium (ICM) of galaxy clusters. We do not limit the study to such emission, however, and investigate a small sample of other interesting and extended radio emission from objects in the southern sky.   A significant portion of this work is invested in detecting, and characterising, extended, diffuse radio emission from galaxy clusters within a 45 degree by 45 degree region of the southern sky centred on R.A. = 0 hours, decl. = -27 degrees. This field is chosen as a deep MWA image has been made available which is sensitive to extended structures. Within the field we search for low-frequency, diffuse cluster emission, previously detected or otherwise. In doing so we find 34 diffuse radio sources, 3 of which are newly detected haloes, 1 newly detected relic with many new candidates of each. Further, we detect a new phoenix candidate as well as 2 candidate dead radio galaxies at the centre of clusters. We confirm previous observations of such emission as well, and measure properties such as their integrated flux densities, spectral indices, and sizes where possible. We compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power with the cluster X-ray luminosity and mass. We find that both scaling relations are consistent with previous findings despite the increase in sample size, though note that the raw scatter in the data for best-fitting parameters increases with increase in sample size. In this, we demonstrate the utility of low-frequency radio telescopes like the MWA in detecting such emission, showing that the MWA is pushing into higher-redshift, lower-mass systems, though we caution that the low resolution of the MWA can work against us.  We follow-up on two galaxy clusters found to host extended emission - Abell S1136 and Abell S1063. In the case of Abell S1136 we observe the emission at its centre with the Australia Telescope Compact Array (ATCA) and determine the presence of a core, suggesting the emission to be that of an ancient episode of an active galactic nucleus in the central elliptical of the cluster, ESO 470-G020. After reducing archival ATCA data for Abell S1063 we find no evidence of a halo and consider the source to be constructed of blended point sources. We close with a description of a strong double-lobed radio source associated with a non-elliptical host ESO 472-G013, likely a spiral or irregular galaxy, that was found serendipitously whilst searching for diffuse cluster emission. We explore the host within the context of star-formation, and consider the possible origins of the AGN and lobes due to interaction with either the nearby spiral, ESO 472-G012, or a past or ongoing merger event.</p>


2019 ◽  
Vol 622 ◽  
pp. A15 ◽  
Author(s):  
L. K. Morabito ◽  
J. H. Matthews ◽  
P. N. Best ◽  
G. Gürkan ◽  
M. J. Jarvis ◽  
...  

We present a study of the low-frequency radio properties of broad absorption line quasars (BALQSOs) from the LOFAR Two-metre Sky-Survey Data Release 1 (LDR1). The value-added LDR1 catalogue contains Pan-STARRS counterparts, which we match with the Sloan Digital Sky Survey (SDSS) DR7 and DR12 quasar catalogues. We find that BALQSOs are twice as likely to be detected at 144 MHz than their non-BAL counterparts, and BALQSOs with low-ionisation species present in their spectra are three times more likely to be detected than those with only high-ionisation species. The BALQSO fraction at 144 MHz is constant with increasing radio luminosity, which is inconsistent with previous results at 1.4 GHz, indicating that observations at the different frequencies may be tracing different sources of radio emission. We cross-match radio sources between the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey and LDR1, which provides a bridge via the LDR1 Pan-STARRS counterparts to identify BALQSOs in SDSS. Consequently we expand the sample of BALQSOs detected in FIRST by a factor of three. The LDR1-detected BALQSOs in our sample are almost exclusively radio-quiet (log(R144 MHz) < 2), with radio sizes at 144 MHz typically less than 200 kpc; these radio sizes tend to be larger than those at 1.4 GHz, suggesting more extended radio emission at low frequencies. We find that although the radio detection fraction increases with increasing balnicity index (BI), there is no correlation between BI and either low-frequency radio power or radio-loudness. This suggests that both radio emission and BI may be linked to the same underlying process, but are spatially distinct phenomena.


Sign in / Sign up

Export Citation Format

Share Document