cluster emission
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 14)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Stefan Duchesne

<p>Low-frequency radio imaging of the southern sky has become available with the advent of the Murchison Widefield Array (MWA). The topic of this thesis is the study of extended, low-frequency radio emission, with a primary focus on the non-thermal synchrotron emission associated with the intra-cluster medium (ICM) of galaxy clusters. We do not limit the study to such emission, however, and investigate a small sample of other interesting and extended radio emission from objects in the southern sky.   A significant portion of this work is invested in detecting, and characterising, extended, diffuse radio emission from galaxy clusters within a 45 degree by 45 degree region of the southern sky centred on R.A. = 0 hours, decl. = -27 degrees. This field is chosen as a deep MWA image has been made available which is sensitive to extended structures. Within the field we search for low-frequency, diffuse cluster emission, previously detected or otherwise. In doing so we find 34 diffuse radio sources, 3 of which are newly detected haloes, 1 newly detected relic with many new candidates of each. Further, we detect a new phoenix candidate as well as 2 candidate dead radio galaxies at the centre of clusters. We confirm previous observations of such emission as well, and measure properties such as their integrated flux densities, spectral indices, and sizes where possible. We compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power with the cluster X-ray luminosity and mass. We find that both scaling relations are consistent with previous findings despite the increase in sample size, though note that the raw scatter in the data for best-fitting parameters increases with increase in sample size. In this, we demonstrate the utility of low-frequency radio telescopes like the MWA in detecting such emission, showing that the MWA is pushing into higher-redshift, lower-mass systems, though we caution that the low resolution of the MWA can work against us.  We follow-up on two galaxy clusters found to host extended emission - Abell S1136 and Abell S1063. In the case of Abell S1136 we observe the emission at its centre with the Australia Telescope Compact Array (ATCA) and determine the presence of a core, suggesting the emission to be that of an ancient episode of an active galactic nucleus in the central elliptical of the cluster, ESO 470-G020. After reducing archival ATCA data for Abell S1063 we find no evidence of a halo and consider the source to be constructed of blended point sources. We close with a description of a strong double-lobed radio source associated with a non-elliptical host ESO 472-G013, likely a spiral or irregular galaxy, that was found serendipitously whilst searching for diffuse cluster emission. We explore the host within the context of star-formation, and consider the possible origins of the AGN and lobes due to interaction with either the nearby spiral, ESO 472-G012, or a past or ongoing merger event.</p>


2021 ◽  
Author(s):  
◽  
Stefan Duchesne

<p>Low-frequency radio imaging of the southern sky has become available with the advent of the Murchison Widefield Array (MWA). The topic of this thesis is the study of extended, low-frequency radio emission, with a primary focus on the non-thermal synchrotron emission associated with the intra-cluster medium (ICM) of galaxy clusters. We do not limit the study to such emission, however, and investigate a small sample of other interesting and extended radio emission from objects in the southern sky.   A significant portion of this work is invested in detecting, and characterising, extended, diffuse radio emission from galaxy clusters within a 45 degree by 45 degree region of the southern sky centred on R.A. = 0 hours, decl. = -27 degrees. This field is chosen as a deep MWA image has been made available which is sensitive to extended structures. Within the field we search for low-frequency, diffuse cluster emission, previously detected or otherwise. In doing so we find 34 diffuse radio sources, 3 of which are newly detected haloes, 1 newly detected relic with many new candidates of each. Further, we detect a new phoenix candidate as well as 2 candidate dead radio galaxies at the centre of clusters. We confirm previous observations of such emission as well, and measure properties such as their integrated flux densities, spectral indices, and sizes where possible. We compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power with the cluster X-ray luminosity and mass. We find that both scaling relations are consistent with previous findings despite the increase in sample size, though note that the raw scatter in the data for best-fitting parameters increases with increase in sample size. In this, we demonstrate the utility of low-frequency radio telescopes like the MWA in detecting such emission, showing that the MWA is pushing into higher-redshift, lower-mass systems, though we caution that the low resolution of the MWA can work against us.  We follow-up on two galaxy clusters found to host extended emission - Abell S1136 and Abell S1063. In the case of Abell S1136 we observe the emission at its centre with the Australia Telescope Compact Array (ATCA) and determine the presence of a core, suggesting the emission to be that of an ancient episode of an active galactic nucleus in the central elliptical of the cluster, ESO 470-G020. After reducing archival ATCA data for Abell S1063 we find no evidence of a halo and consider the source to be constructed of blended point sources. We close with a description of a strong double-lobed radio source associated with a non-elliptical host ESO 472-G013, likely a spiral or irregular galaxy, that was found serendipitously whilst searching for diffuse cluster emission. We explore the host within the context of star-formation, and consider the possible origins of the AGN and lobes due to interaction with either the nearby spiral, ESO 472-G012, or a past or ongoing merger event.</p>


Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt ◽  
A. R. Offringa ◽  
G. W. Pratt ◽  
Q. Zheng ◽  
...  

Abstract We detect and characterise extended, diffuse radio emission from galaxy clusters at 168 MHz within the Epoch of Reionization 0-h field: a $45^{\circ} \times 45^{\circ}$ region of the southern sky centred on R. A. ${}= 0^{\circ}$ , decl. ${}=-27^{\circ}$ . We detect 29 sources of interest; a newly detected halo in Abell 0141; a newly detected relic in Abell 2751; 4 new halo candidates and a further 4 new relic candidates; and a new phoenix candidate in Abell 2556. Additionally, we find nine clusters with unclassifiable, diffuse steep-spectrum emission as well as a candidate double relic system associated with RXC J2351.0-1934. We present measured source properties such as their integrated flux densities, spectral indices ( $\alpha$ , where $S_\nu \propto \nu^\alpha$ ), and sizes where possible. We find several of the diffuse sources to have ultra-steep spectra including the halo in Abell 0141, if confirmed, showing $\alpha \leq -2.1 \pm 0.1$ with the present data making it one of the steepest-spectrum haloes known. Finally, we compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power ( $P_{1.4}$ ) with the cluster X-ray luminosity ( $L_{\textrm{X}}$ ) and mass ( $M_{500}$ ). We find that the newly detected haloes and candidate haloes are consistent with the $P_{1.4}$ – $L_{\textrm{X}}$ and $P_{1.4}$ – $M_{500}$ relations and see an increase in scatter in the previously found relations with increasing sample size likely caused by inhomogeneous determination of $P_{1.4}$ across the full halo sample. We show that the MWA is capable of detecting haloes and relics within most of the galaxy clusters within the Planck catalogue of Sunyaev–Zel’dovich sources depending on exact halo or relic properties.


2020 ◽  
Vol 500 (4) ◽  
pp. 4827-4836
Author(s):  
Hambeleleni Ndiyavala-Davids ◽  
Christo Venter ◽  
Andreas Kopp ◽  
Michael Backes

ABSTRACT Terzan 5 is the only Galactic globular cluster that has plausibly been detected in the very high energy range. Stacking upper limits by High-Energy Stereoscopic System on the integral γ-ray flux of a population of other globular clusters are very constraining for leptonic cluster emission models. We demonstrate that uncertainty in model parameters leads to a large spread in the predicted flux, and there are indeed regions in parameter space for which the stringent stacking upper limits are satisfied. We conduct two more case studies: we study the uncertainties in differential TeV flux for M15, showing that our model can satisfy the stringent MAGIC upper limits for this cluster, for typical cluster parameters. We also calculate the differential flux at TeV energies for ω Cen, from which five pulsars have recently been detected at radio energies. It is thus important to increase measurement accuracy on key model parameters in order to improve predictions of cluster fluxes so as to better guide the observational strategy of the Cherenkov Telescope Array.


2020 ◽  
Vol 501 (2) ◽  
pp. 1970-1998
Author(s):  
Stacey Alberts ◽  
Kyoung-Soo Lee ◽  
Alexandra Pope ◽  
Mark Brodwin ◽  
Yi-Kuan Chiang ◽  
...  

ABSTRACT Massive galaxy clusters undergo strong evolution from z ∼ 1.6 to z ∼ 0.5, with overdense environments at high-z characterized by abundant dust-obscured star formation and stellar mass growth which rapidly give way to widespread quenching. Data spanning the near- to far-infrared (IR) can directly trace this transformation; however, such studies have largely been limited to the massive galaxy end of cluster populations. In this work, we present ‘total light’ stacking techniques spanning $3.4\!-\!500\, \mu$m aimed at revealing the total cluster emission, including low-mass members and potential intracluster dust. We detail our procedures for WISE, Spitzer, and Herschel imaging, including corrections to recover the total stacked emission in the case of high fractions of detected galaxies. We apply our techniques to 232 well-studied log$\, M_{200}/\mathrm{M}_{\odot }\sim 13.8$ clusters in multiple redshift bins, recovering extended cluster emission at all wavelengths. We measure the averaged IR radial profiles and spectral energy distributions (SEDs), quantifying the total stellar and dust content. The near-IR profiles are well described by an NFW model with a high (c ∼ 7) concentration. Dust emission is similarly concentrated, albeit suppressed at $r\lesssim 0.3\,$Mpc. The measured SEDs lack warm dust, consistent with the colder SEDs of low-mass galaxies. We derive total stellar masses consistent with the theoretical Mhalo−M⋆ relation and specific star formation rates that evolve strongly with redshift, echoing that of log$\, M_{\star }/\mathrm{M}_{\odot }\gtrsim 10$ cluster galaxies. Separating out the massive population reveals the majority of cluster far-IR emission ($\sim 70\!-\!80{{\ \rm per\ cent}}$) is provided by the low-mass constituents, which differs from field galaxies. This effect may be a combination of mass-dependent quenching and excess dust in low-mass cluster galaxies.


Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 63
Author(s):  
Varsha Chitnis ◽  
Amit Shukla ◽  
K. P. Singh ◽  
Jayashree Roy ◽  
Sudip Bhattacharyya ◽  
...  

Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission. Here we present a method to spectrally decouple the cluster and active galactic nucleus (AGN) emission in imaging X-ray detectors. We use three sets of simultaneous Niel Gehrels Swift XRT and NuStar data. These observations were made during the period 2015 November to 2017 February, when a huge increase in the gamma-ray emission was observed. We find that the gamma-ray emission shows a very high degree of variability (40%–50%) on time scales of 1–10 days, whereas the hard X-ray emission, associated with the AGN, shows a low variability (∼15%–30%), on various time scales in the range of 0.01–60 days.


2020 ◽  
Vol 640 ◽  
pp. A108 ◽  
Author(s):  
G. Giovannini ◽  
M. Cau ◽  
A. Bonafede ◽  
H. Ebeling ◽  
L. Feretti ◽  
...  

Aims. Non-thermal properties of galaxy clusters have been studied using detailed and deep radio images in comparison with X-ray data. While much progress has been made in this area, most of the studied clusters are at a relatively low redshift (z <  0.3). Here we investigate the evolutionary properties of the non-thermal cluster emission using two statistically complete samples at z >  0.3. Methods. We obtained short JVLA observations at the L-band of the statistically complete sample of very X-ray luminous clusters from the Massive Cluster Survey (MACS), namely 34 clusters in the redshift range of 0.3–0.5 and with nominal X-ray fluxes in excess of 2 × 10−12 erg s−1 cm−2 (0.1–2.4 keV) in the ROSAT Bright Source Catalogue. We add to this list the complete sample of the 12 most distant MACS clusters (z >  0.5). Results. Most clusters show evidence of emission in the radio regime. We present the radio properties of all clusters in our sample and show images of newly detected diffuse sources. A radio halo is detected in 19 clusters and five clusters contain a relic source. Most of the brightest cluster galaxies (BCG) in relaxed clusters show radio emission with powers typical of FRII radio galaxies and some are surrounded by a radio mini-halo. Conclusions. The high frequency of radio emission from the BCG in relaxed clusters suggests that BCG feedback mechanisms are already in place at z ∼ 0.6. The properties of radio halos and the small number of detected relics suggest redshift evolution in the properties of diffuse sources. The radio power (and size) of radio halos could be related to the number of past merger events in the history of the system. In this scenario, the presence of a giant and high-power radio halo is indicative of an evolved system with a large number of past major mergers, whereas small low-power halos are found in less evolved clusters.


2020 ◽  
Vol 496 (2) ◽  
pp. 1554-1564 ◽  
Author(s):  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
Matthew Bayliss ◽  
...  

ABSTRACT We present results from a 577 ks XMM–Newton observation of SPT-CL J0459–4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev–Zel’dovich effect. The data confirm the cluster’s high redshift, z = 1.71 ± 0.02, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $M_{500}=(1.8\pm 0.2)\times 10^{14}\, {\rm M}_{\odot }$; cluster emission is detected above the background to a radius of $\sim \!2.2\, r_{500}$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of 7.2 ± 0.3 keV and metallicity with respect to Solar of $Z/\, Z_{\odot }=0.37\pm 0.08$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster centre; at radii $r\gt 0.3\, r_{500}$, we find $Z/\, Z_{\odot }=0.33\pm 0.17$ in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.


2020 ◽  
Vol 239 ◽  
pp. 11002
Author(s):  
A.Yu. Konobeyev ◽  
U. Fischer ◽  
P.E. Pereslavtsev ◽  
S.P. Simakov

In the frame of the Power Plant Physics and Technology of EUROfusion, new evaluations of general purpose neutron cross-section data were performed for the 180,182,183,184,186W isotopes covering the neutron energy up to 200 MeV. A special version of the TALYS nuclear model code implementing the geometry dependent hybrid model supplied with models for the non-equilibrium cluster emission was applied for calculations of the nuclide production and the energy distribution of the emitted particles. The parameters of the GDH model were properly estimated using measured data for individual tungsten isotopes. The neutron cross-sections were evaluated making use of available experimental data, systematics including estimated A-dependence of components of gas production cross-sections, and covariance information produced as part of the evaluation process. The BEKED code package, developed at KIT, was applied for calculations of co-variances using a dedicated Monte Carlo method. The evaluated data were processed into standard ENDF data format using the TEFAL code and the FOX module of the BEKED system. The evaluated data files were checked for errors and inconsistencies, processed with the NJOY code into ACE data format, and benchmarked against available integral experiments with MCNP neutron transport calculations.


Sign in / Sign up

Export Citation Format

Share Document