scholarly journals The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs

2020 ◽  
Vol 494 (3) ◽  
pp. 3491-3511 ◽  
Author(s):  
C Lemon ◽  
M W Auger ◽  
R McMahon ◽  
T Anguita ◽  
Y Apostolovski ◽  
...  

ABSTRACT We report the results of the STRong lensing Insights into the Dark Energy Survey (STRIDES) follow-up campaign of the late 2017/early 2018 season. We obtained spectra of 65 lensed quasar candidates with ESO Faint Object Spectrograph and Camera 2 on the NTT and Echellette Spectrograph and Imager on Keck, confirming 10 new lensed quasars and 10 quasar pairs. Eight lensed quasars are doubly imaged with source redshifts between 0.99 and 2.90, one is triply imaged (DESJ0345−2545, z = 1.68), and one is quadruply imaged (quad: DESJ0053−2012, z = 3.8). Singular isothermal ellipsoid models for the doubles, based on high-resolution imaging from SAMI on Southern Astrophysical Research Telescope or Near InfraRed Camera 2 on Keck, give total magnifications between 3.2 and 5.6, and Einstein radii between 0.49 and 1.97 arcsec. After spectroscopic follow-up, we extract multi-epoch grizY photometry of confirmed lensed quasars and contaminant quasar + star pairs from DES data using parametric multiband modelling, and compare variability in each system’s components. By measuring the reduced χ2 associated with fitting all epochs to the same magnitude, we find a simple cut on the less variable component that retains all confirmed lensed quasars, while removing 94 per cent of contaminant systems. Based on our spectroscopic follow-up, this variability information improves selection of lensed quasars and quasar pairs from 34-45 per cent to 51–70 per cent, with most remaining contaminants being star-forming galaxies. Using mock lensed quasar light curves we demonstrate that selection based only on variability will over-represent the quad fraction by 10 per cent over a complete DES magnitude-limited sample, explained by the magnification bias and hence lower luminosity/more variable sources in quads.

Author(s):  
A. Poci ◽  
K. Kuehn ◽  
T. Abbott ◽  
F. B. Abdalla ◽  
S. Allam ◽  
...  

AbstractThe Dark Energy Survey is undertaking an observational programme imaging 1/4 of the southern hemisphere sky with unprecedented photometric accuracy. In the process of observing millions of faint stars and galaxies to constrain the parameters of the dark energy equation of state, the Dark Energy Survey will obtain pre-discovery images of the regions surrounding an estimated 100 gamma-ray bursts over 5 yr. Once gamma-ray bursts are detected by, e.g., the Swift satellite, the DES data will be extremely useful for follow-up observations by the transient astronomy community. We describe a recently-commissioned suite of software that listens continuously for automated notices of gamma-ray burst activity, collates information from archival DES data, and disseminates relevant data products back to the community in near-real-time. Of particular importance are the opportunities that non-public DES data provide for relative photometry of the optical counterparts of gamma-ray bursts, as well as for identifying key characteristics (e.g., photometric redshifts) of potential gamma-ray burst host galaxies. We provide the functional details of the DESAlert software, and its data products, and we show sample results from the application of DESAlert to numerous previously detected gamma-ray bursts, including the possible identification of several heretofore unknown gamma-ray burst hosts.


2014 ◽  
Vol 446 (3) ◽  
pp. 2523-2539 ◽  
Author(s):  
M. Banerji ◽  
S. Jouvel ◽  
H. Lin ◽  
R. G. McMahon ◽  
O. Lahav ◽  
...  

2020 ◽  
Vol 495 (2) ◽  
pp. 1666-1671 ◽  
Author(s):  
Dan Ryczanowski ◽  
Graham P Smith ◽  
Matteo Bianconi ◽  
Richard Massey ◽  
Andrew Robertson ◽  
...  

ABSTRACT Motivated by discovering strongly lensed supernovae, gravitational waves, and kilonovae in the 2020s, we investigate whether to build a watchlist of clusters based on observed cluster properties (i.e. lens-plane selection) or on the detectability of strongly lensed background galaxies (i.e. source-plane selection). First, we estimate the fraction of high-redshift transient progenitors that reside in galaxies that are themselves too faint to be detected as being strongly lensed. We find ∼15–50 per cent of transient progenitors reside in z = 1 − 2 galaxies too faint to be detected in surveys that reach AB ≃ 23, such as the Dark Energy Survey. This falls to ≲10 per cent at depths that will be probed by early data releases of LSST (AB ≃ 25). Secondly, we estimate a conservative lower limit on the fraction of strong-lensing clusters that will be missed by magnitude-limited searches for multiply imaged galaxies and giant arcs due to the faintness of such images. We find that DES-like surveys will miss ∼75 per cent of 1015 M⊙ strong-lensing clusters, rising to ∼100 per cent of 1014 M⊙ clusters. Deeper surveys, such as LSST, will miss ∼40 per cent at 1015 M⊙ and ∼95 per cent at 1014 M⊙. Our results motivate building a cluster watchlist for strongly lensed transients that includes those found by the lens-plane selection.


2017 ◽  
Vol 13 (S338) ◽  
pp. 61-64
Author(s):  
Robert E. Butler ◽  
M. Soares-Santos ◽  
J. Annis ◽  
K. Herner ◽  

AbstractThe DESGW program is a collaboration between members of the Dark Energy Survey, the wider astronomical community, and the LIGO-Virgo Collaboration to search for optical counterparts of gravitational wave events, such as those expected from binary neutron star mergers or neutron star-black hole mergers. While binary black hole (BBH) events are not expected to produce an electromagnetic (EM) signature, emission is certainly not impossible. The DESGW program has performed follow-up observations of four BBH events detected by LIGO in order to search for any possible EM counterpart. Failure to find such counterparts is still relevant in that it produces limits on optical emission from such events. This is a review of follow-up results from O1 BBH events and a discussion of the status of ongoing uniform re-analysis of all BBH events that DESGW has followed up to date.


2011 ◽  
Vol 417 (4) ◽  
pp. 2601-2623 ◽  
Author(s):  
Emily Wisnioski ◽  
Karl Glazebrook ◽  
Chris Blake ◽  
Ted Wyder ◽  
Chris Martin ◽  
...  

2020 ◽  
Vol 901 (1) ◽  
pp. 83 ◽  
Author(s):  
R. Morgan ◽  
M. Soares-Santos ◽  
J. Annis ◽  
K. Herner ◽  
A. Garcia ◽  
...  

2018 ◽  
Vol 478 (2) ◽  
pp. 2006-2018 ◽  
Author(s):  
E Luque ◽  
B Santiago ◽  
A Pieres ◽  
J L Marshall ◽  
A B Pace ◽  
...  

2020 ◽  
Vol 498 (2) ◽  
pp. 2575-2593 ◽  
Author(s):  
P Wiseman ◽  
M Pursiainen ◽  
M Childress ◽  
E Swann ◽  
M Smith ◽  
...  

ABSTRACT Rapidly evolving transients (RETs), also termed fast blue optical transients, are a recently discovered group of astrophysical events that display rapid luminosity evolution. RETs typically rise to peak in less than 10 d and fade within 30, a time-scale unlikely to be compatible with the decay of Nickel-56 that drives conventional supernovae (SNe). Their peak luminosity spans a range of −15 < Mg < −22.5, with some events observed at redshifts greater than 1. Their evolution on fast time-scales has hindered high-quality follow-up observations, and thus their origin and explosion/emission mechanism remains unexplained. In this paper, we present the largest sample of RETs to date, comprising 106 objects discovered by the Dark Energy Survey, and perform the most comprehensive analysis of RET host galaxies. Using deep-stacked photometry and emission lines from OzDES spectroscopy, we derive stellar masses and star formation rates (SFRs) for 49 host galaxies, and metallicities ([O/H]) for 37. We find that RETs explode exclusively in star-forming galaxies and are thus likely associated with massive stars. Comparing RET hosts to samples of host galaxies of other explosive transients as well as field galaxies, we find that RETs prefer galaxies with high specific SFRs (〈log (sSFR)〉 ∼ −9.6), indicating a link to young stellar populations, similar to stripped-envelope SNe. RET hosts appear to show a lack of chemical enrichment, their metallicities akin to long-duration gamma-ray bursts and superluminous SN host galaxies (〈12 + log (O/H)〉 ∼ 9.4). There are no clear relationships between mass or SFR of the host galaxies and the peak magnitudes or decline rates of the transients themselves.


Sign in / Sign up

Export Citation Format

Share Document