scholarly journals Evolution of disc thickness in simulated high-redshift galaxies

2021 ◽  
Vol 502 (1) ◽  
pp. 1433-1440
Author(s):  
Xi Meng ◽  
Oleg Y Gnedin

ABSTRACT We study the growth of stellar discs of Milky Way-sized galaxies using a suite of cosmological simulations. We calculate the half-mass axis lengths and axis ratios of stellar populations split by age in galaxies with stellar mass $M_{*}=10^7\!-\!10^{10}\, \mathrm{M}_{\odot }$ at redshifts z > 1.5. We find that in our simulations stars always form in relatively thin discs, and at ages below 100 Myr are contained within half-mass height z1/2 ∼ 0.1 kpc and short-to-long axial ratio z1/2/x1/2 ∼ 0.15. Disc thickness increases with the age of stellar population, reaching median z1/2 ∼ 0.8 kpc and z1/2/x1/2 ∼ 0.6 for stars older than 500 Myr. We trace the same group of stars over the simulation snapshots and show explicitly that their intrinsic shape grows more spheroidal over time. We identify a new mechanism that contributes to the observed disc thickness: rapid changes in the orientation of the galactic plane mix the configuration of young stars. The frequently mentioned ‘upside-down’ formation scenario of galactic discs, which posits that young stars form in already thick discs at high redshift, may be missing this additional mechanism of quick disc inflation. The actual formation of stars within a fairly thin plane is consistent with the correspondingly flat configuration of dense molecular gas that fuels star formation.

2011 ◽  
Vol 7 (S280) ◽  
pp. 325-338
Author(s):  
Kirsten Kraiberg Knudsen

AbstractI present an overview of the molecular gas observations in high redshift galaxies. This field has seen tremendous progress in the past few years, with an increased number of detections of other molecules than CO. The molecular line observations are done towards different classes of massive starbursts, including submillimeter galaxies, quasars, and massive gas-rich disks. I will highlight results of detections of HCN, HCO+, and other small molecules, as well as the Spitzer detections of PAHs. Additionally, I will discuss about the excitation of CO and other species in the high-z galaxies and put this in the context of new telescopes such as ALMA.


2016 ◽  
Vol 3 (6) ◽  
pp. 160025 ◽  
Author(s):  
Zhi-Yu Zhang ◽  
Padelis P. Papadopoulos ◽  
R. J. Ivison ◽  
Maud Galametz ◽  
M. W. L. Smith ◽  
...  

Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H 2 gas velocity fields and enclosed H 2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H 2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H 2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.


Author(s):  
David M. Nataf

AbstractThe assembly of the Milky Way bulge is an old topic in astronomy, one now in a period of renewed and rapid development. That is due to tremendous advances in observations of bulge stars, motivating observations of both local and high-redshift galaxies, and increasingly sophisticated simulations. The dominant scenario for bulge formation is that of the Milky Way as a nearly pure disk galaxy, with the inner disk having formed a bar and buckled. This can potentially explain virtually all bulge stars with [Fe/H] ≳ −1.0, which comprise 95% of the stellar population. The evidence is the incredible success in N-body models of this type in making non-trivial, non-generic predictions, such as the rotation curve and velocity dispersion measured from radial velocities, and the spatial morphologies of the peanut/X-shape and the long bar. The classical bulge scenario, whereby the bulge formed from early dissipative collapse and mergers, remains viable for stars with [Fe/H] ≲ −1.0 and potentially a minority of the other stars. A classical bulge is expected from Λ-CDM cosmological simulations, can accentuate the properties of an existing bar in a hybrid system, and is most consistent with the bulge abundance trends such as [Mg/Fe], which are elevated relative to both the thin and thick disks. Finally, the clumpy-galaxy scenario is considered, as it is the correct description of most Milky Way precursors given observations of high-redshift galaxies. Simulations predict that these star-forming clumps will sometimes migrate to the centres of galaxies where they may form a bulge, and galaxies often include a bulge clump as well. They will possibly form a bar with properties consistent with those of the Milky Way, such as the exponential profile and metallicity gradient. Given the relative successes of these scenarios, the Milky Way bulge is plausibly of composite origin, with a classical bulge and/or inner halo numerically dominant for stars with [Fe/H] ≲ −1.0, a buckling thick disk for stars with − 1.0 ≲ [Fe/H]] ≲ -0.50 perhaps descended from the clumpy-galaxy phase, and a buckling thin disk for stars with [Fe/H] ≳ −0.50. Overlaps from these scenarios are uncertain throughout.


2019 ◽  
Vol 624 ◽  
pp. A23 ◽  
Author(s):  
N. P. H. Nesvadba ◽  
R. Cañameras ◽  
R. Kneissl ◽  
S. Koenig ◽  
C. Yang ◽  
...  

The bright 3P1–3P0 ([CI] 1–0) and 3P2–3P1 ([CI] 2–1) lines of atomic carbon are becoming more and more widely employed as tracers of the cold neutral gas in high-redshift galaxies. Here we present observations of these lines in the 11 galaxies of the set of Planck’s Dusty GEMS, the brightest gravitationally lensed galaxies on the extragalactic submillimeter sky probed by the Planck satellite. We have [CI] 1–0 and [CI] 2–1 measurements for seven and eight of these galaxies, respectively, including four galaxies where both lines have been measured. We use our observations to constrain the gas excitation mechanism, excitation temperatures, optical depths, atomic carbon and molecular gas masses, and carbon abundances. Ratios of LCI/LFIR are similar to those found in the local universe, and suggest that the total cooling budget through atomic carbon has not significantly changed in the last 12 Gyr. Both lines are optically thin and trace 1 − 6 × 107 M⊙ of atomic carbon. Carbon abundances, XCI, are between 2.5 and 4 × 10−5, for an ultra-luminous infrared galaxy (ULIRG) CO-to-H2 conversion factor of αCO = 0.8 M⊙ / [K km s−1 pc2]. Ratios of molecular gas masses derived from [CI] 1–0 and CO agree within the measurement uncertainties for five galaxies, and agree to better than a factor of two for another two with [CI] 1–0 measurements, after carefully taking CO excitation into account. This does not support the idea that intense, high-redshift starburst galaxies host large quantities of “CO-dark” gas. These results support the common assumptions underlying most molecular gas mass estimates made for massive, dusty, high-redshift starburst galaxies, although the good agreement between the masses obtained with both tracers cannot be taken as independent confirmation of either αCO or XCI.


2018 ◽  
Vol 615 ◽  
pp. A142 ◽  
Author(s):  
Paola Andreani ◽  
Edwin Retana-Montenegro ◽  
Zhi-Yu Zhang ◽  
Padelis Papadopoulos ◽  
Chentao Yang ◽  
...  

Context. Atomic carbon can be an efficient tracer of the molecular gas mass, and when combined to the detection of high-J and low-J CO lines it yields also a sensitive probe of the power sources in the molecular gas of high-redshift galaxies. Aims. The recently installed SEPIA 5 receiver at the focus of the APEX telescope has opened up a new window at frequencies 159–211 GHz allowing the exploration of the atomic carbon in high-z galaxies, at previously inaccessible frequencies from the ground. We have targeted three gravitationally lensed galaxies at redshift of about 3 and conducted a comparative study of the observed high-J CO/CI ratios with well-studied nearby galaxies. Methods. Atomic carbon (CI(2–1)) was detected in one of the three targets and marginally in a second, while in all three targets the J = 7→6 CO line is detected. Results. The CO(7–6)/CI(2–1), CO(7–6)/CO(1–0) line ratios and the CO(7–6)/(far-IR continuum) luminosity ratio are compared to those of nearby objects. A large excitation status in the ISM of these high-z objects is seen, unless differential lensing unevenly boosts the CO line fluxes from the warm and dense gas more than the CO(1–0), CI(2–1), tracing a more widely distributed cold gas phase. We provide estimates of total molecular gas masses derived from the atomic carbon and the carbon monoxide CO(1–0), which within the uncertainties turn out to be equal.


2016 ◽  
Vol 11 (S322) ◽  
pp. 64-74
Author(s):  
J. M. Diederik Kruijssen

AbstractThe Central Molecular Zone (CMZ, the central 500 pc of the Milky Way) contains the largest reservoir of high-density molecular gas in the Galaxy, but forms stars at a rate 10–100 times below commonly-used star formation relations. We discuss recent efforts in understanding how the nearest galactic nucleus forms its stars. The latest models of the gas inflow, star formation, and feedback duty cycle reproduce the main observable features of the CMZ, showing that star formation is episodic and that the CMZ currently resides at a star formation minimum. Using orbital modelling, we derive the three-dimensional geometry of the CMZ and show how the orbital dynamics and the star formation potential of the gas are closely coupled. We discuss how this coupling reveals the physics of star formation and feedback under the conditions seen in high-redshift galaxies, and promotes the formation of the densest stellar clusters in the Galaxy.


2020 ◽  
Vol 636 ◽  
pp. A37 ◽  
Author(s):  
Q. D’Amato ◽  
R. Gilli ◽  
C. Vignali ◽  
M. Massardi ◽  
F. Pozzi ◽  
...  

Context. Obscured active galactic nuclei (AGN) represent a significant fraction of the entire AGN population, especially at high redshift (∼70% at z = 3 − 5). They are often characterized by the presence of large gas and dust reservoirs that are thought to sustain and possibly obscure vigorous star formation processes that make these objects shine at FIR and submillimeter wavelengths. Studying the physical properties of obscured AGN and their host galaxies is crucial to shedding light on the early stages of a massive system lifetime. Aims. We aim to investigate the contribution of the interstellar medium (ISM) to the obscuration of quasars in a sample of distant highly star forming galaxies and to unveil their morphological and kinematics properties. Methods. We exploit Atacama Large Millimeter/submillimeter Array Cycle 4 observations of the continuum (∼2.1 mm) and high-J CO emission of a sample of six X-ray selected, FIR detected galaxies hosting an obscured AGN at zspec >  2.5 in the 7 Ms Chandra Deep Field-South. We measured the masses and sizes of the dust and molecular gas by fitting the images, visibilities, and spectra, and we derived the gas density and column density on the basis of a uniform sphere geometry. Finally, we compared the measured column densities with those derived from the Chandra X-ray spectra. Results. We detected both the continuum and line emission for three sources for which we measured both the flux density and size. For the undetected sources, we derived an upper limit on the flux density from the root mean square of the images. We found that the detected galaxies are rich in gas and dust (molecular gas mass in the range < 0.5–2.7 × 1010 M⊙ for αCO = 0.8 and up to ∼2 × 1011 M⊙ for αCO = 6.5, and dust mass < 0.9–4.9 × 108 M⊙) and generally compact (gas major axis 2.1–3.0 kpc, dust major axis 1.4–2.7 kpc). The column densities associated with the ISM are on the order of 1023 − 24 cm−2, which is comparable with those derived from the X-ray spectra. For the detected sources we also derived dynamical masses in the range 0.8–3.7 × 1010 M⊙. Conclusions. We conclude that the ISM of high redshift galaxies can substantially contribute to nuclear obscuration up to the Compton-thick (> 1024 cm−2) regime. In addition, we found that all the detected sources show a velocity gradient reminding one rotating system, even though two of them show peculiar features in their morphology that can be associated with a chaotic, possibly merging, structure.


2021 ◽  
Vol 909 (1) ◽  
pp. 56
Author(s):  
Daizhong Liu ◽  
Emanuele Daddi ◽  
Eva Schinnerer ◽  
Toshiki Saito ◽  
Adam Leroy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document