scholarly journals Profile comparison of the 6–9 μm polycyclic aromatic hydrocarbon bands in starburst-dominated galaxies

Author(s):  
Carla M Canelo ◽  
Dinalva A Sales ◽  
Amâncio C S Friaça ◽  
Miriani Pastoriza ◽  
Karín Menéndez-Delmestre

Abstract Polycyclic aromatic hydrocarbons (PAHs) are of great astrochemical and astrobiological interest due to their potential to form prebiotic molecules. We analyse the 7.7 and 8.6 μm PAH bands in 126 predominantly starburst-dominated galaxies extracted from the Spitzer/IRS ATLAS project. Based on the peak positions of these bands, we classify them into the different A, B, and C Peeters’ classes, which allows us to address the potential characteristics of the PAH emitting population. We compare this analysis with previous work focused on the 6.2 μm PAH band for the same sample. For the first time in the literature, this statistical analysis is performed on a sample of galaxies. In our sample, the 7.7 μm complex is equally distributed in A and B object’s class while the 8.6 μm band presents more class B sources. Moreover, 39 per cent of the galaxies were distributed into A class objects for both 6.2 and 7.7 μm bands and only 18 per cent received the same A classification for the three bands. The “A A A” galaxies presented higher temperatures and less dust in their interstellar medium. Considering the redshift range covered by our sample, the distribution of the three bands into the different Peeters’ classes reveals a potential cosmological evolution in the molecular nature of the PAHs that dominate the interstellar medium in these galaxies, where B class objects seem to be more frequent at higher redshifts and, therefore, further studies have to be addressed.

Science ◽  
2018 ◽  
Vol 359 (6372) ◽  
pp. 202-205 ◽  
Author(s):  
Brett A. McGuire ◽  
Andrew M. Burkhardt ◽  
Sergei Kalenskii ◽  
Christopher N. Shingledecker ◽  
Anthony J. Remijan ◽  
...  

Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


2019 ◽  
Author(s):  
Yachu Du ◽  
Kyle Plunkett

We show that polycyclic aromatic hydrocarbon (PAH) chromophores that are linked between two five-membered rings can access planarized structures with reduced optical gaps and redox potentials. Two aceanthrylene chromophores were connected into dimer model systems with the chromophores either projected outward (2,2’-biaceanthrylene) or inward (1,1’-biaceanthrylene) and the optical and electronic properties were compared. Only the planar 2,2’-biaceanthrylene system showed significant reductions of the optical gaps (1 eV) and redox potentials in relation to the aceanthrylene monomer.<br>


Sign in / Sign up

Export Citation Format

Share Document