scholarly journals XMM–Newtonlarge program on SN1006 – I. Methods and initial results of spatially resolved spectroscopy

2015 ◽  
Vol 453 (4) ◽  
pp. 3954-3975 ◽  
Author(s):  
Jiang-Tao Li ◽  
Anne Decourchelle ◽  
Marco Miceli ◽  
Jacco Vink ◽  
Fabrizio Bocchino
2020 ◽  
Vol 499 (4) ◽  
pp. 5679-5681
Author(s):  
Jiang-Tao Li ◽  
Anne Decourchelle ◽  
Marco Miceli ◽  
Jacco Vink ◽  
Fabrizio Bocchino

2021 ◽  
Author(s):  
Ma Te ◽  
Tetsuya Inagaki ◽  
Masato Yoshida ◽  
Mayumi Ichino ◽  
Satoru Tsuchikawa

Abstract Wood has various mechanical properties, so stiffness evaluation is critical for quality management. Using conventional strain gauges constantly is high cost, also challenging to measure precious wood materials due to the use of strong adhesive. This study demonstrates the correlation between light scattering changes inside the wood cell walls and tensile strain. A multifiber-based visible-near-infrared (Vis–NIR) spatially resolved spectroscopy (SRS) system was designed to rapidly and conventiently acquire such light scattering changes. For the preliminary experiment, samples with different thicknesses were measured to evaluate the influence of thickness. The differences in Vis–NIR SRS spectral data diminish with an increase in sample thickness, which suggests that the SRS method can successfully measure the whole strain (i.e., surface and inside) of wood samples. Then, for the primary experiment, 18 wood samples with the same thickness (2 mm) were tested to construct a strain calibration model. The prediction accuracy was characterized by a determination coefficient (R2) of 0.86 with a root mean squared error (RMSE) of 297.89 με for five-fold cross-validation; for test validation, The prediction accuracy was characterized by an R2 of 0.82 and an RMSE of 345.44 με.


2010 ◽  
Vol 27 (3) ◽  
pp. 360-373 ◽  
Author(s):  
Michael B. Pracy ◽  
Warrick J. Couch ◽  
Harald Kuntschner

AbstractWe have used the Low Resolution Imaging Spectrograph on the W. M. Keck I telescope to obtain spatially resolved spectroscopy of a small sample of six ‘post-starburst’ and three ‘dusty-starburst’ galaxies in the rich cluster CL 0016+16 at z=0.55. We use this to measure radial profiles of the Hδ and [OII]λ3727 lines which are diagnostic probes of the mechanisms that give rise to the abrupt changes in star formation rates in these galaxies. In the post-starburst sample we are unable to detect any radial gradients in the Hδ line equivalent width — although one galaxy exhibits a gradient from one side of the galaxy to the other. The absence of Hδ gradients in these galaxies is consistent with their production via interaction with the intracluster medium; however, our limited spatial sampling prevents us from drawing robust conclusions. All members of the sample have early-type morphologies, typical of post-starburst galaxies in general, but lack the high incidence of tidal tails and disturbances seen in local field samples. This argues against a merger origin and adds weight to a scenario where truncation by the intra-cluster medium is at work. The post-starburst spectral signature is consistent over the radial extent probed with no evidence of [OII]λ3727 emission and strong Hδ absorption at all radii, i.e. the post-starburst classification is not an aperture effect. In contrast the ‘dusty-starburst’ sample shows a tendency for a central concentration of [OII]λ3727 emission. This is most straightforwardly interpreted as the consequence of a central starburst. However, other possibilities exist such as a non-uniform dust distribution (which is expected in such galaxies) and/or a non-uniform starburst age distribution. The members of the sample exhibit late-type and irregular morphologies.


2002 ◽  
Vol 395 (3) ◽  
pp. 753-759 ◽  
Author(s):  
G. Wegner ◽  
E. M. Corsini ◽  
R. P. Saglia ◽  
R. Bender ◽  
D. Merkl ◽  
...  

2002 ◽  
Vol 187 ◽  
pp. 95-98
Author(s):  
Roberta M. Humphreys ◽  
Kris Davidson ◽  
Nathan Smith

AbstractIRC+10420 is a post–red supergiant at the empirical luminosity boundary in the HR diagram. It has now reached a stage in its blueward evolution where increasing opacity and partial ionization destabilize its atmosphere leading to rapid mass loss. Indeed, its wind is so dense that it is opaque and hides the underlying star. We have obtained HST/STIS spectroscopy with spatial resolution good enough to separate the star from its complex ejecta with numerous arcs, knots and jet-like features. The ejecta form essentially a reflection nebula, allowing us to view the star from a range of directions. The kinematics of the ejecta cannot be reconciled with existing models with either an equatorial disk or a bipolar outflow. Therefore we propose a model with a uniform spherically symmetric outflow of gas with random, asymmetric ejections superimposed. In our model, local instabilities allow for inflowing and outflowing material to coexist.


Sign in / Sign up

Export Citation Format

Share Document