scholarly journals Blazhko effect in the Galactic bulge fundamental mode RR Lyrae stars – I. Incidence rate and differences between modulated and non-modulated stars

2017 ◽  
Vol 466 (3) ◽  
pp. 2602-2613 ◽  
Author(s):  
Z. Prudil ◽  
M. Skarka
2020 ◽  
Vol 494 (1) ◽  
pp. 1237-1249
Author(s):  
M Skarka ◽  
Z Prudil ◽  
J Jurcsik

ABSTRACT The number of stars observed by the Optical Gravitational Lensing Experiment (OGLE) project in the Galactic bulge offers an invaluable chance to study RR Lyrae stars in a statistical manner. We used data of 3141 fundamental-mode RR Lyrae stars showing the Blazhko effect observed in OGLE-IV to investigate a possible connection between modulation amplitudes and periods, light curve, and pulsation characteristics. We found that there is no simple monotonic correlation between any combination of two parameters concerning the Blazhko and pulsation amplitudes, periods, and the shape of the light curves. There are only systematic limits. There is a bottom limit of the modulation period with respect to the pulsation period. We also found that the possible range of modulation amplitudes decreases with increasing pulsation period, which could point towards that the Blazhko effect is suppressed in cooler, larger, more luminous, and less metal abundant bulge RR Lyrae stars. Our investigation revealed that the distribution of the modulation periods can be described with two populations of stars with the mean modulation periods of 48 and 186  d. There is a certain region with a low density of the modulated stars, which we call the Blazhko valley, in the pulsation period–modulation period plane. Based on the similarity of the modulation envelopes, basically every star can be assigned to one of six morphological classes. The double modulation was found in 25 per cent of the studied stars. Only 6.3 per cent of modulated stars belong to the Oosterhoff group II.


2004 ◽  
Vol 193 ◽  
pp. 124-127
Author(s):  
Tomasz Mizerski

AbstractI have performed a detailed analysis of multiperiodic RR Lyr stars of the Galactic Bulge and the Small Magellanic Cloud. In the rich OGLE-II database on the Galactic Bulge objects I detected more than 2500 RR Lyr stars, with almost 600 of them exhibiting multiperiodic behavior of various, sometimes unique, kinds. Many of them can only be explained by excitation of nonradial modes. There are two major, striking differences between the two discussed stellar systems: the incidence rate of RRd double mode pulsators is over 30 times higher in the SMC than in the Galactic Bulge, and there are more than twice as many Blazhko stars in the Galactic Bulge as in the SMC.


2013 ◽  
Vol 9 (S301) ◽  
pp. 459-460
Author(s):  
L. Molnár ◽  
J. M. Benkő ◽  
R. Szabó ◽  
Z. Kolláth

AbstractWe examined the complete short cadence sample of fundamental-mode Kepler RR Lyrae stars to further investigate the recently discovered dynamical effects such as period doubling and additional modes. Here we present the findings on four stars. V450 Lyr may be a non-classical double-mode RR Lyrae star pulsating in the fundamental mode and the second overtone. For the three remaining stars we observe the interaction of three different modes. Since the period ratios are close to resonant values, we observe quasi-repetitive patterns in the pulsation cycles in the stars. These findings support the mode-resonance explanations of the Blazhko effect.


2003 ◽  
Vol 598 (1) ◽  
pp. 597-609 ◽  
Author(s):  
C. Alcock ◽  
D. R. Alves ◽  
A. Becker ◽  
D. Bennett ◽  
K. H. Cook ◽  
...  

Author(s):  
Xiao-Wei Duan ◽  
Xiao-Dian Chen ◽  
Li-Cai Deng ◽  
Fan Yang ◽  
Chao Liu ◽  
...  

Steps toward the nature inside RR Lyrae variables can not only improve our understanding of variable stars but also innovate the precision when we use them as tracers to map the structure of the universe. In this work, we develop a hand-crafted one-dimensional pattern recognition pipeline to fetch out the "first apparitions", the most prominent observational characteristic of shock. We report the first detection of hydrogen emission lines in the first-overtone and multi-mode RR Lyrae variables. We find that there is an anti-correlation between the intensity and the radial velocity of the emission signal, which is possibly caused by opacity changing in the helium ionization zone. Moreover, we find one RRd star with hydrogen emission that possibly shows Blazhko-type modulations. According to our discoveries, with an enormous volume of upcoming data releases of variable stars and spectra, it may become possible to build up the bridge between shock waves and big problems like the Blazhko effect in non-fundamental mode RR Lyrae stars.


1995 ◽  
Vol 155 ◽  
pp. 42-43
Author(s):  
Hiromoto Shibahashi ◽  
Masao Takata

AbstractBy assuming that the RR Lyrae stars have fairly strong dipole magnetic fields with the symmetry axis oblique to the rotation axis of the star, we show that the oscillation mode which would be a pure radial oscillation in absence of the magnetic field has a quadrupole component, which is axisymmetric with respect to the magnetic axis. The aspect angle of the quadrupole component changes due to the stellar rotation, and this apparent variation is interpreted as the Blazhko effect in RR Lyrae stars.


Sign in / Sign up

Export Citation Format

Share Document